Suppr超能文献

在美国使用疫苗不良事件报告系统进行数据挖掘。

Data mining in the US using the Vaccine Adverse Event Reporting System.

作者信息

Iskander John, Pool Vitali, Zhou Weigong, English-Bullard Roseanne

机构信息

Office of Immunization Safety, Office of the Chief Science Officer, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.

出版信息

Drug Saf. 2006;29(5):375-84. doi: 10.2165/00002018-200629050-00002.

Abstract

The US Vaccine Adverse Event Reporting System (VAERS), which is charged with vigilance for detecting vaccine-related safety issues, faces an increasingly complex immunisation environment. Since 1990, steady increases in vaccine licensing and distribution have resulted in increasing numbers of reports to VAERS. Prominent features of current reports include more routine vaccine co-administration and frequent reports of new postvaccination clinical syndromes. Data-mining methods, based on disproportionality analyses, are one strategy being pursued by VAERS researchers to increase the utility of its complex database. The types of analyses used include proportional reporting ratios, association rule discovery, and various 'historic limits' methods that compare observed versus expected event counts. The use of such strategies in VAERS has been primarily supplemental and retrospective. Signals for inactivated influenza, typhoid and tetanus toxoid-containing vaccines have been successfully identified. Concerns flagged through data mining should always be subject to clinical case review as a first evaluation step. Persistent issues should be subject to formal hypothesis testing in large linked databases or other controlled-study settings. Automated data-mining techniques for prospective use are currently undergoing development and evaluation within VAERS. Their use (as one signal-detection tool among many) by trained medical evaluators who are aware of system limitations is one legitimate approach to improving the ability of VAERS to generate vaccine-safety hypotheses. Such approaches are needed as more new vaccines continue to be licensed.

摘要

美国疫苗不良事件报告系统(VAERS)负责监测与疫苗相关的安全问题,面临着日益复杂的免疫环境。自1990年以来,疫苗许可和分发量稳步增加,导致向VAERS报告的数量不断增多。当前报告的突出特点包括更多常规疫苗联合接种以及新的疫苗接种后临床综合征报告频繁。基于不成比例分析的数据挖掘方法是VAERS研究人员为提高其复杂数据库的效用而采用的一种策略。所使用的分析类型包括比例报告率、关联规则发现以及各种比较观察到的与预期事件数的“历史界限”方法。这些策略在VAERS中的使用主要是补充性的和回顾性的。已成功识别出含灭活流感、伤寒和破伤风类毒素疫苗的信号。通过数据挖掘标记出的问题应始终作为首要评估步骤接受临床病例审查。持续性问题应在大型关联数据库或其他对照研究环境中进行正式的假设检验。VAERS目前正在开发和评估前瞻性使用的自动化数据挖掘技术。由了解系统局限性的训练有素的医学评估人员将其作为众多信号检测工具之一来使用,是提高VAERS生成疫苗安全假设能力的一种合理方法。随着越来越多的新疫苗获得许可,需要采用此类方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验