Niquet J, Seo D-W, Allen S G, Wasterlain C G
Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, West Los Angeles, CA 90073, USA.
Neuroscience. 2006 Aug 11;141(1):77-86. doi: 10.1016/j.neuroscience.2006.03.073. Epub 2006 May 11.
When excitotoxic mechanisms are blocked, severe or prolonged hypoxia and hypoxia-ischemia can still kill neurons, by a mechanism which is poorly understood. We studied this "non-excitotoxic hypoxic death" in primary cultures of rat dentate gyrus neurons. Many neurons subjected to hypoxia in the presence of blockers of ionotropic glutamate receptors developed the electron microscopic features of necrosis. They showed early mitochondrial swelling, loss of mitochondrial membrane potential and cytoplasmic release of cytochrome c, followed by activation of caspase-9, and by caspase-9-dependent activation of caspase-3. Caspase inhibitors were neuroprotective. These results suggest that "non-excitotoxic hypoxic neuronal death" requires the activation in many neurons of a cell death program originating in mitochondria and leading to necrosis.
当兴奋性毒性机制被阻断时,严重或长时间的缺氧及缺氧缺血仍可通过一种尚不清楚的机制杀死神经元。我们在大鼠齿状回神经元原代培养物中研究了这种“非兴奋性毒性缺氧死亡”。许多在离子型谷氨酸受体阻滞剂存在的情况下经历缺氧的神经元出现了坏死的电子显微镜特征。它们表现出早期线粒体肿胀、线粒体膜电位丧失以及细胞色素c的胞质释放,随后是半胱天冬酶-9的激活,以及由半胱天冬酶-9依赖性激活的半胱天冬酶-3。半胱天冬酶抑制剂具有神经保护作用。这些结果表明,“非兴奋性毒性缺氧神经元死亡”需要许多神经元激活源自线粒体并导致坏死的细胞死亡程序。