Suppr超能文献

DNA小沟的可变形性:分子动力学自由能模拟研究

Minor groove deformability of DNA: a molecular dynamics free energy simulation study.

作者信息

Zacharias Martin

机构信息

School of Engineering and Science, International University Bremen, D-28759 Bremen, Germany.

出版信息

Biophys J. 2006 Aug 1;91(3):882-91. doi: 10.1529/biophysj.106.083816. Epub 2006 May 12.

Abstract

The conformational deformability of nucleic acids can influence their function and recognition by proteins. A class of DNA binding proteins including the TATA box binding protein binds to the DNA minor groove, resulting in an opening of the minor groove and DNA bending toward the major groove. Explicit solvent molecular dynamics simulations in combination with the umbrella sampling approach have been performed to investigate the molecular mechanism of DNA minor groove deformations and the indirect energetic contribution to protein binding. As a reaction coordinate, the distance between backbone segments on opposite strands was used. The resulting deformed structures showed close agreement with experimental DNA structures in complex with minor groove-binding proteins. The calculated free energy of minor groove deformation was approximately 4-6 kcal mol(-1) in the case of a central TATATA sequence. A smaller equilibrium minor groove width and more restricted minor groove mobility was found for the central AAATTT and also a significantly ( approximately 2 times) larger free energy change for opening the minor groove. The helical parameter analysis of trajectories indicates that an easier partial unstacking of a central TA versus AT basepair step is a likely reason for the larger groove flexibility of the central TATATA case.

摘要

核酸的构象可变形性会影响其功能以及与蛋白质的识别。一类包括TATA框结合蛋白的DNA结合蛋白与DNA小沟结合,导致小沟打开且DNA向大沟弯曲。已结合伞形抽样方法进行了显式溶剂分子动力学模拟,以研究DNA小沟变形的分子机制以及对蛋白质结合的间接能量贡献。作为反应坐标,使用了互补链上主链片段之间的距离。所得的变形结构与小沟结合蛋白复合物中的实验性DNA结构密切吻合。对于中央TATATA序列,计算出的小沟变形自由能约为4 - 6千卡/摩尔。对于中央AAATTT,发现平衡小沟宽度更小且小沟流动性更受限,同时打开小沟的自由能变化也显著(约2倍)更大。轨迹的螺旋参数分析表明,中央TA与AT碱基对步更容易部分解堆叠是中央TATATA情况中小沟灵活性更大的可能原因。

相似文献

1
Minor groove deformability of DNA: a molecular dynamics free energy simulation study.
Biophys J. 2006 Aug 1;91(3):882-91. doi: 10.1529/biophysj.106.083816. Epub 2006 May 12.
2
4
DNA structure: what's in charge?
J Mol Biol. 2000 Dec 15;304(5):803-20. doi: 10.1006/jmbi.2000.4167.
7
Binding mechanisms of TATA box-binding proteins: DNA kinking is stabilized by specific hydrogen bonds.
Biophys J. 2000 Apr;78(4):1988-96. doi: 10.1016/S0006-3495(00)76746-4.
8
Dynamic simulations of 13 TATA variants refine kinetic hypotheses of sequence/activity relationships.
J Mol Biol. 2001 May 11;308(4):681-703. doi: 10.1006/jmbi.2001.4617.
9
What drives proteins into the major or minor grooves of DNA?
J Mol Biol. 2007 Jan 5;365(1):1-9. doi: 10.1016/j.jmb.2006.09.059. Epub 2006 Sep 27.

引用本文的文献

1
Modeling the Homologous Recombination Process: Methods, Successes and Challenges.
Int J Mol Sci. 2023 Oct 4;24(19):14896. doi: 10.3390/ijms241914896.
2
Structural underpinnings of mutation rate variations in the human genome.
Nucleic Acids Res. 2023 Aug 11;51(14):7184-7197. doi: 10.1093/nar/gkad551.
3
Structural features of DNA that determine RNA polymerase II core promoter.
BMC Genomics. 2016 Nov 25;17(1):973. doi: 10.1186/s12864-016-3292-z.
4
The intrinsic mechanics of B-DNA in solution characterized by NMR.
Nucleic Acids Res. 2016 Apr 20;44(7):3432-47. doi: 10.1093/nar/gkw084. Epub 2016 Feb 15.
7
The effect of a G:T mispair on the dynamics of DNA.
PLoS One. 2013;8(1):e53305. doi: 10.1371/journal.pone.0053305. Epub 2013 Jan 15.
8
Sequence-specific recognition of cancer drug-DNA adducts by HMGB1a repair protein.
Biophys J. 2012 May 16;102(10):2331-8. doi: 10.1016/j.bpj.2012.04.013. Epub 2012 May 15.
9
Understanding the sequence-dependence of DNA groove dimensions: implications for DNA interactions.
PLoS One. 2010 Dec 29;5(12):e15931. doi: 10.1371/journal.pone.0015931.
10
Modeling the early stage of DNA sequence recognition within RecA nucleoprotein filaments.
Nucleic Acids Res. 2010 Oct;38(19):6313-23. doi: 10.1093/nar/gkq459. Epub 2010 May 27.

本文引用的文献

1
Base-stacking and base-pairing contributions into thermal stability of the DNA double helix.
Nucleic Acids Res. 2006 Jan 31;34(2):564-74. doi: 10.1093/nar/gkj454. Print 2006.
2
TBP flanking sequences: asymmetry of binding, long-range effects and consensus sequences.
Nucleic Acids Res. 2006 Jan 10;34(1):104-19. doi: 10.1093/nar/gkj414. Print 2006.
5
Macromolecular recognition.
Curr Opin Struct Biol. 2005 Apr;15(2):171-5. doi: 10.1016/j.sbi.2005.01.018.
7
High-resolution structure of an extended A-tract: [d(CGCAAATTTGCG)]2.
J Am Chem Soc. 2004 Dec 1;126(47):15330-1. doi: 10.1021/ja045207x.
9
Accurate interaction energies of hydrogen-bonded nucleic acid base pairs.
J Am Chem Soc. 2004 Aug 18;126(32):10142-51. doi: 10.1021/ja048436s.
10
Nucleosomes facilitate their own invasion.
Nat Struct Mol Biol. 2004 Aug;11(8):763-9. doi: 10.1038/nsmb801. Epub 2004 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验