Hardin Shane C, Duncan Kateri A, Huber Steven C
United States Department of Agriculture, Agricultural Research Service, Photosynthesis Research Unit, Urbana, Illinois 61801, USA.
Plant Physiol. 2006 Jul;141(3):1106-19. doi: 10.1104/pp.106.078006. Epub 2006 May 12.
Sucrose (Suc) synthase (SUS) cleaves Suc to form UDP glucose and fructose, and exists in soluble and membrane-associated forms, with the latter proposed to channel UDP glucose to the cellulose-synthase complex on the plasma membrane of plant cells during synthesis of cellulose. However, the structural features responsible for membrane localization and the mechanisms regulating its dual intracellular localization are unknown. The maize (Zea mays) SUS1 isoform is likely to have the intrinsic ability to interact directly with membranes because we show: (1) partial membrane localization when expressed in Escherichia coli, and (2) binding to carbonate-stripped plant microsomes in vitro. We have undertaken mutational analyses (truncations and alanine substitutions) and in vitro microsome-binding assays with the SUS1 protein to define intrinsic membrane-binding regions and potential regulatory factors that could be provided by cellular microenvironment. The results suggest that two regions of SUS1 contribute to membrane affinity: (1) the amino-terminal noncatalytic domain, and (2) a region with sequence similarity to the C-terminal pleckstrin homology domain of human pleckstrin. Alanine substitutions within the pleckstrin homology-like domain of SUS1 reduced membrane association in E. coli and with plant microsomes in vitro without reducing enzymatic activity. Microsomal association of wild-type SUS1 displayed cooperativity with SUS1 protein concentration and was stimulated by both lowering the pH and adding Suc. These studies offer insight into the molecular level regulation of SUS1 localization and its participation in carbon partitioning in plants. Moreover, transgenics with active SUS mutants altered in membrane affinity may be of technological utility.
蔗糖(Suc)合酶(SUS)裂解蔗糖形成UDP葡萄糖和果糖,它以可溶性和膜结合形式存在,后者被认为在纤维素合成过程中将UDP葡萄糖输送到植物细胞质膜上的纤维素合酶复合体。然而,负责膜定位的结构特征以及调节其双重细胞内定位的机制尚不清楚。玉米(Zea mays)SUS1同工型可能具有直接与膜相互作用的内在能力,因为我们发现:(1)在大肠杆菌中表达时部分定位于膜上,(2)在体外与经碳酸盐处理的植物微粒体结合。我们对SUS1蛋白进行了突变分析(截短和丙氨酸取代)以及体外微粒体结合试验,以确定内在膜结合区域和可能由细胞微环境提供的潜在调节因子。结果表明,SUS1的两个区域有助于膜亲和力:(1)氨基末端非催化结构域,(2)一个与人类普列克底物蛋白C末端普列克结构域具有序列相似性的区域。SUS1普列克结构域样区域内的丙氨酸取代降低了其在大肠杆菌中的膜结合以及在体外与植物微粒体的结合,而不降低酶活性。野生型SUS1与微粒体的结合表现出与SUS1蛋白浓度的协同性,并且通过降低pH值和添加蔗糖均能刺激这种结合。这些研究为SUS1定位的分子水平调控及其在植物碳分配中的作用提供了见解。此外,膜亲和力改变的活性SUS突变体转基因可能具有技术实用性。