Suppr超能文献

在自然感觉刺激过程中揭示的人类大脑后皮质中的外在和内在系统。

Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation.

作者信息

Golland Yulia, Bentin Shlomo, Gelbard Hagar, Benjamini Yoav, Heller Ruth, Nir Yuval, Hasson Uri, Malach Rafael

机构信息

Department of Psychology, Hebrew University of Jerusalem, Jerusalem, Israel.

出版信息

Cereb Cortex. 2007 Apr;17(4):766-77. doi: 10.1093/cercor/bhk030. Epub 2006 May 12.

Abstract

When exposing subjects to a continuous segment of an audiovisual movie, a large expanse of human cortex, especially in the posterior half of the cerebral cortex, shows stimulus-driven activity. However, embedded within this widespread activity, there are cortical regions whose activity is dissociated from the external stimulation. These regions are intercorrelated among themselves, forming a functional network, which largely overlaps with cortical areas previously shown to be deactivated by task-oriented paradigms. Moreover, the network of areas whose neuronal dynamics are associated with external inputs and the network of areas that appears to be intrinsically driven complement each other, providing coverage of most of the posterior cortex. Thus, we propose that naturalistic stimuli reveal a fundamental neuroanatomical partition of the human posterior cortex into 2 global networks: an "extrinsic" system, comprising areas associated with the processing of external inputs, and an "intrinsic" system, largely overlapping with the task-negative, default-mode network, comprising areas associated with--as yet not fully understood--intrinsically oriented functions.

摘要

当让受试者观看一段连续的视听影片时,大片的人类皮质,尤其是大脑皮质的后半部分,会呈现出刺激驱动的活动。然而,在这种广泛的活动中,存在一些皮质区域,其活动与外部刺激无关。这些区域彼此之间相互关联,形成一个功能网络,该网络在很大程度上与先前显示在任务导向范式下失活的皮质区域重叠。此外,神经元动力学与外部输入相关的区域网络和似乎由内在驱动的区域网络相互补充,覆盖了大部分后皮质。因此,我们提出,自然主义刺激揭示了人类后皮质在神经解剖学上的一个基本划分,即分为两个全局网络:一个“外在”系统,由与外部输入处理相关的区域组成;一个“内在”系统,在很大程度上与任务负性的默认模式网络重叠,由与尚未完全理解的内在导向功能相关的区域组成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验