Tripathi V N, Srivastava S
Department of Genetics, University of New Delhi, South Campus, New Delhi 110021, India.
Can J Microbiol. 2006 Apr;52(4):287-92. doi: 10.1139/w05-133.
Metal resistances in microbes are important to study not only to understand metal homeostasis but also to use such organisms further in environmental bioremediation. Nickel (Ni2+) is an important micronutrient, which at higher concentration becomes toxic. Many Ni2+-resistant organisms are known, which resist metal by active efflux. Pseudomonas putida S4, a natural isolate from India, is reported to show a multi-metal resistance profile. In the present study, the Ni2+-resistance mechanism in strain S4 was examined. Wild-type cells gradually accumulated Ni2+ but kept it preferentially in the periplasmic space in a bound form. In Ni2+-sensitive mutants, periplasmic storage was disturbed and more metal accumulated cytoplasmically, producing toxicity. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis of periplasmic proteins revealed a band of approximately 18 kDa, which appeared only in Ni2+-exposed wild-type cells, and which was absent from cells not exposed to Ni2+ as well as from Ni2+-sensitive mutants. On the basis of these observations, we propose a Ni2+-resistance mechanism in P. putida S4 based on sequestration of metal in the periplasmic space. This is the first study of sequestration-based Ni2+ resistance.