Suppr超能文献

一种基于规则的情感依赖特征提取方法,用于语音情感分析。

A rule-based emotion-dependent feature extraction method for emotion analysis from speech.

作者信息

Hozjan Vladimir, Kacic Zdravko

机构信息

Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova ul. 17, SI-2000 Maribor, Slovenia.

出版信息

J Acoust Soc Am. 2006 May;119(5 Pt 1):3109-20. doi: 10.1121/1.2188647.

Abstract

This paper presents a rule-based method to determine emotion-dependent features, which are defined from high-level features derived from the statistical measurements of prosodic parameters of speech. Emotion-dependent features are selected from high-level features using extraction rules. The ratio of emotional expression similarity between two speakers is defined by calculating the number and values of the emotion-dependent features that are present for the two speakers being compared. Emotional speech from Interface databases is used for evaluation of the proposed method, which was used to analyze emotional speech from five male and four female speakers in order to find any similarities and differences among individual speakers. The speakers are actors that have interpreted six emotions in four different languages. The results show that all the speakers share some universal signs regarding certain emotion-dependent features of emotional expression. Further analysis revealed that almost all speakers in the analysis used unique sets of emotion-dependent features and each speaker used unique values for the defined emotion-dependent features. The comparison among speakers shows that the expressed emotions can be analyzed according to two criteria. The first criterion is a defined set of emotion-dependent features and the second is an emotion-dependent feature value.

摘要

本文提出了一种基于规则的方法来确定情感相关特征,这些特征是从语音韵律参数统计测量得出的高级特征中定义的。情感相关特征是使用提取规则从高级特征中选择的。通过计算被比较的两个说话者所具有的情感相关特征的数量和值,来定义两个说话者之间情感表达相似度的比率。来自接口数据库的情感语音用于评估所提出的方法,该方法用于分析五名男性和四名女性说话者的情感语音,以便找出个体说话者之间的任何异同。这些说话者是用四种不同语言诠释六种情感的演员。结果表明,所有说话者在情感表达的某些情感相关特征方面都有一些通用标志。进一步分析表明,分析中的几乎所有说话者都使用了独特的情感相关特征集,并且每个说话者为定义的情感相关特征使用了独特的值。说话者之间的比较表明,可以根据两个标准来分析所表达的情感。第一个标准是一组定义的情感相关特征,第二个标准是情感相关特征值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验