Suppr超能文献

协方差结构模型中的最大可靠性和功效。

Maximal reliability and power in covariance structure models.

作者信息

Penev Spiridon, Raykov Tenko

机构信息

Department of Statistics, University of New South Wales, Sydney, Australia.

出版信息

Br J Math Stat Psychol. 2006 May;59(Pt 1):75-87. doi: 10.1348/000711005X68183.

Abstract

In covariance structure modelling, the non-centrality parameter of the asymptotic chi-squared distribution is typically used as an indicator of asymptotic power for hypothesis tests. When a latent linear regression is of interest, the contribution to power by the maximal reliability coefficient, which is associated with used latent variable indicators, is examined and this relationship is further explicated in the case of congeneric measures. It is also shown that item parcelling may reduce power of tests of latent regression parameters. Recommendations on weights for parcelling to avoid power loss are provided, which are found to be those of optimal linear composites with maximal reliability.

摘要

在协方差结构建模中,渐近卡方分布的非中心参数通常用作假设检验渐近功效的指标。当潜在线性回归受到关注时,会考察与所使用的潜在变量指标相关的最大信度系数对功效的贡献,并在同类测量的情况下进一步阐述这种关系。研究还表明,项目打包可能会降低潜在回归参数检验的功效。文中提供了关于打包权重的建议,以避免功效损失,发现这些权重是具有最大信度的最优线性合成权重。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验