Suppr超能文献

用于跨不同微阵列数据集对基因表达谱进行聚类的特定上下文无限混合模型。

Context-specific infinite mixtures for clustering gene expression profiles across diverse microarray dataset.

作者信息

Liu X, Sivaganesan S, Yeung K Y, Guo J, Bumgarner R E, Medvedovic Mario

机构信息

Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue ML 56, Cincinnati, OH 45267, USA.

出版信息

Bioinformatics. 2006 Jul 15;22(14):1737-44. doi: 10.1093/bioinformatics/btl184. Epub 2006 May 18.

Abstract

MOTIVATION

Identifying groups of co-regulated genes by monitoring their expression over various experimental conditions is complicated by the fact that such co-regulation is condition-specific. Ignoring the context-specific nature of co-regulation significantly reduces the ability of clustering procedures to detect co-expressed genes due to additional 'noise' introduced by non-informative measurements.

RESULTS

We have developed a novel Bayesian hierarchical model and corresponding computational algorithms for clustering gene expression profiles across diverse experimental conditions and studies that accounts for context-specificity of gene expression patterns. The model is based on the Bayesian infinite mixtures framework and does not require a priori specification of the number of clusters. We demonstrate that explicit modeling of context-specificity results in increased accuracy of the cluster analysis by examining the specificity and sensitivity of clusters in microarray data. We also demonstrate that probabilities of co-expression derived from the posterior distribution of clusterings are valid estimates of statistical significance of created clusters.

AVAILABILITY

The open-source package gimm is available at http://eh3.uc.edu/gimm.

摘要

动机

通过监测基因在各种实验条件下的表达来识别共调控基因群是复杂的,因为这种共调控是条件特异性的。由于非信息性测量引入的额外“噪声”,忽略共调控的上下文特异性会显著降低聚类程序检测共表达基因的能力。

结果

我们开发了一种新颖的贝叶斯层次模型和相应的计算算法,用于跨不同实验条件和研究对基因表达谱进行聚类,该模型考虑了基因表达模式的上下文特异性。该模型基于贝叶斯无限混合框架,不需要事先指定聚类的数量。通过检查微阵列数据中聚类的特异性和敏感性,我们证明了对上下文特异性的显式建模提高了聚类分析的准确性。我们还证明,从聚类的后验分布得出的共表达概率是对所创建聚类统计显著性的有效估计。

可用性

开源软件包gimm可在http://eh3.uc.edu/gimm获得。

相似文献

3
Bayesian mixture model based clustering of replicated microarray data.基于贝叶斯混合模型的重复微阵列数据聚类
Bioinformatics. 2004 May 22;20(8):1222-32. doi: 10.1093/bioinformatics/bth068. Epub 2004 Feb 10.
4
6
TimeClust: a clustering tool for gene expression time series.TimeClust:一种用于基因表达时间序列的聚类工具。
Bioinformatics. 2008 Feb 1;24(3):430-2. doi: 10.1093/bioinformatics/btm605. Epub 2007 Dec 6.
8
Hierarchical tree snipping: clustering guided by prior knowledge.层次树剪枝:由先验知识引导的聚类
Bioinformatics. 2007 Dec 15;23(24):3335-42. doi: 10.1093/bioinformatics/btm526. Epub 2007 Nov 7.
10
Clustering of change patterns using Fourier coefficients.使用傅里叶系数对变化模式进行聚类。
Bioinformatics. 2008 Jan 15;24(2):184-91. doi: 10.1093/bioinformatics/btm568. Epub 2007 Nov 19.

引用本文的文献

4
Bayesian correlated clustering to integrate multiple datasets.贝叶斯相关聚类分析整合多数据集。
Bioinformatics. 2012 Dec 15;28(24):3290-7. doi: 10.1093/bioinformatics/bts595. Epub 2012 Oct 9.
5
Patient-specific data fusion defines prognostic cancer subtypes.个体化患者数据融合定义了预后癌症亚型。
PLoS Comput Biol. 2011 Oct;7(10):e1002227. doi: 10.1371/journal.pcbi.1002227. Epub 2011 Oct 20.
7
Discovering transcriptional modules by Bayesian data integration.基于贝叶斯数据整合的转录模块发现。
Bioinformatics. 2010 Jun 15;26(12):i158-67. doi: 10.1093/bioinformatics/btq210.
10
CLEAN: CLustering Enrichment ANalysis.CLEAN:聚类富集分析。
BMC Bioinformatics. 2009 Jul 29;10:234. doi: 10.1186/1471-2105-10-234.

本文引用的文献

2
Bayesian mixture model based clustering of replicated microarray data.基于贝叶斯混合模型的重复微阵列数据聚类
Bioinformatics. 2004 May 22;20(8):1222-32. doi: 10.1093/bioinformatics/bth068. Epub 2004 Feb 10.
3
The KEGG resource for deciphering the genome.用于解读基因组的KEGG资源。
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D277-80. doi: 10.1093/nar/gkh063.
7
Transcriptional regulatory networks in Saccharomyces cerevisiae.酿酒酵母中的转录调控网络。
Science. 2002 Oct 25;298(5594):799-804. doi: 10.1126/science.1075090.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验