Borlak Jürgen, Gasparic Antje, Locher Mathias, Schupke Hubert, Hermann Robert
Fraunhofer Institute of Toxicology and Experimental Medicine, Center for Drug Research and Medical Biotechnology, D-30625 Hannover, Germany.
Metabolism. 2006 Jun;55(6):711-21. doi: 10.1016/j.metabol.2006.01.006.
Retigabine (D-23129), an N-2-amino-4-(4-fluorobenzylamino)phenylcarbamine acid ethyl ester, is a novel antiepileptic drug which is currently in phase II clinical development. This drug undergoes N-glucuronidation. We aimed to identify the principal enzymes involved in the N-glucuronidation pathway of retigabine and compared our findings with those obtained from human liver (a pool of 30 donors) and kidney microsomes (a pool of 3 donors) and with results from a human absorption, distribution, metabolism, and excretion study upon administration of 200 microCi of [(14)C]-D-23129. Essentially, microsomal assays with UGT1A1 produced only one of the 2 N-glucuronides, whereas UGT1A9 is capable of forming both N-glucuronides. The rates of metabolism for UGT1A9, human liver microsomes, and UGT1A1 were 200, 100, and 100 pmol N-glucuronide per minute per milligram of protein, respectively. At the 50 micromol/L uridine diphosphate glucoronic acid (UDPGA) concentration, UGT1A4 also catalyzed the N-glucuronidation of retigabine, the rates being approximately 5 and 6 pmol/(min.mg protein). With UGT1A9, the production of metabolites 1 and 2 proceeded at a K(m) of 38+/-25 and 45+/-15 micromol/L, whereas the K(m) for retigabine N-glucuronidation by human liver microsomal fractions was 145+/-39 micromol/L. Furthermore, a V(max) of 1.2+/-0.3 (nmol/[min.mg protein]) was estimated for human liver microsomes (4 individual donors). We investigated the potential for drug-drug interaction using the antiepileptic drugs valproic acid, lamotrigine, the tricyclic antidepressant imipramine, and the anesthetic propofol. These are commonly used medications and are extensively glucuronidated. No potential for drug-drug interactions was found at clinically relevant concentrations (when assayed with human liver microsomes or UGT1A9 enzyme preparations). Notably, the biosynthesis of retigabine-N-glucuronides was not inhibited in human liver microsomal assays in the presence of 330 micromol/L bilirubin, and glucuronidation of retigabine was also observed with microsomal preparations from human kidney and Crigler-Najjar type II liver. This suggests that lack of a particular UDP-glucuronosyltransferase (UGT) isoform (eg, UGT1A1 in kidney) or functional loss of an entire UGT1A gene does not completely abolish disposal of the drug. Finally, chromatographic separations of extracts from microsomal assays and human urine of volunteers receiving a single dose of (14)C-retigabine provided clear evidence for the presence of the 2 N-glucuronides known to be produced by UGT1A9. We therefore suggest N-glucuronidation of retigabine to be of importance in the metabolic clearance of this drug.
瑞替加滨(D - 23129),即N - 2 - 氨基 - 4 -(4 - 氟苄氨基)苯基甲胺酸乙酯,是一种新型抗癫痫药物,目前正处于II期临床开发阶段。该药物会发生N - 葡萄糖醛酸化反应。我们旨在确定参与瑞替加滨N - 葡萄糖醛酸化途径的主要酶,并将我们的研究结果与来自人肝脏(30名供体的混合样本)和肾脏微粒体(3名供体的混合样本)的结果以及给予200微居里[(14)C] - D - 23129后进行的人体吸收、分布、代谢和排泄研究的结果进行比较。从本质上讲,用UGT1A1进行的微粒体测定仅产生了2种N - 葡萄糖醛酸苷中的一种,而UGT1A9能够形成两种N - 葡萄糖醛酸苷。UGT1A9、人肝脏微粒体和UGT1A1的代谢速率分别为每分钟每毫克蛋白质200、100和100皮摩尔N - 葡萄糖醛酸苷。在50微摩尔/升尿苷二磷酸葡萄糖醛酸(UDPGA)浓度下,UGT1A4也催化瑞替加滨的N - 葡萄糖醛酸化反应,速率约为5和6皮摩尔/(分钟·毫克蛋白质)。对于UGT1A9,代谢物1和2的生成在38±25和45±15微摩尔/升的米氏常数(K(m))下进行,而人肝脏微粒体组分对瑞替加滨进行N - 葡萄糖醛酸化反应的K(m)为145±39微摩尔/升。此外,估计人肝脏微粒体(4名个体供体)的最大反应速率(V(max))为1.2±0.3(纳摩尔/[分钟·毫克蛋白质])。我们使用抗癫痫药物丙戊酸、拉莫三嗪、三环类抗抑郁药丙咪嗪和麻醉药丙泊酚研究了药物 - 药物相互作用的可能性。这些都是常用药物,并且广泛地进行葡萄糖醛酸化反应。在临床相关浓度下(用人肝脏微粒体或UGT1A9酶制剂进行测定时)未发现药物 - 药物相互作用的可能性。值得注意的是,在330微摩尔/升胆红素存在的情况下,人肝脏微粒体测定中瑞替加滨 - N - 葡萄糖醛酸苷的生物合成未受到抑制,并且在人肾脏和克里格勒 - 纳贾尔II型肝脏的微粒体制剂中也观察到了瑞替加滨的葡萄糖醛酸化反应。这表明缺乏特定的尿苷二磷酸葡萄糖醛酸基转移酶(UGT)同工型(例如肾脏中的UGT1A1)或整个UGT1A基因的功能丧失并不会完全消除药物的清除。最后,对接受单剂量(14)C - 瑞替加滨的志愿者的微粒体测定提取物和人尿液进行色谱分离,为已知由UGT1A9产生的2种N - 葡萄糖醛酸苷的存在提供了明确证据。因此,我们认为瑞替加滨的N - 葡萄糖醛酸化反应在该药物的代谢清除中具有重要意义。