Suppr超能文献

序列比较与蛋白质结构预测。

Sequence comparison and protein structure prediction.

作者信息

Dunbrack Roland L

机构信息

Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.

出版信息

Curr Opin Struct Biol. 2006 Jun;16(3):374-84. doi: 10.1016/j.sbi.2006.05.006. Epub 2006 May 19.

Abstract

Sequence comparison is a major step in the prediction of protein structure from existing templates in the Protein Data Bank. The identification of potentially remote homologues to be used as templates for modeling target sequences of unknown structure and their accurate alignment remain challenges, despite many years of study. The most recent advances have been in combining as many sources of information as possible--including amino acid variation in the form of profiles or hidden Markov models for both the target and template families, known and predicted secondary structures of the template and target, respectively, the combination of structure alignment for distant homologues and sequence alignment for close homologues to build better profiles, and the anchoring of certain regions of the alignment based on existing biological data. Newer technologies have been applied to the problem, including the use of support vector machines to tackle the fold classification problem for a target sequence and the alignment of hidden Markov models. Finally, using the consensus of many fold recognition methods, whether based on profile-profile alignments, threading or other approaches, continues to be one of the most successful strategies for both recognition and alignment of remote homologues. Although there is still room for improvement in identification and alignment methods, additional progress may come from model building and refinement methods that can compensate for large structural changes between remotely related targets and templates, as well as for regions of misalignment.

摘要

序列比对是根据蛋白质数据库中现有的模板预测蛋白质结构的一个主要步骤。尽管经过多年研究,但识别潜在的远源同源物作为未知结构靶序列建模的模板以及进行精确比对仍然是挑战。最近的进展在于尽可能多地整合各种信息来源,包括以靶序列家族和模板家族的轮廓或隐马尔可夫模型形式存在的氨基酸变异、模板和靶序列各自已知的和预测的二级结构、远源同源物的结构比对与近源同源物的序列比对相结合以构建更好的轮廓,以及基于现有生物学数据确定比对的某些区域。新技术已应用于该问题,包括使用支持向量机解决靶序列的折叠分类问题以及隐马尔可夫模型的比对。最后,利用多种折叠识别方法的共识,无论基于轮廓-轮廓比对、穿线法还是其他方法,仍然是识别和比对远源同源物最成功的策略之一。尽管在识别和比对方法上仍有改进空间,但额外的进展可能来自模型构建和优化方法,这些方法可以弥补远源相关靶序列和模板之间的大结构变化以及比对错误的区域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验