Landeros Alfonso, Lange Kenneth
Departments of Computational Medicine, University of California, Los Angeles.
Departments of Human Genetics, University of California, Los Angeles.
J Comput Graph Stat. 2023;32(3):1097-1108. doi: 10.1080/10618600.2022.2146697. Epub 2022 Dec 13.
Many problems in classification involve huge numbers of irrelevant features. Variable selection reveals the crucial features, reduces the dimensionality of feature space, and improves model interpretation. In the support vector machine literature, variable selection is achieved by penalties. These convex relaxations seriously bias parameter estimates toward 0 and tend to admit too many irrelevant features. The current paper presents an alternative that replaces penalties by sparse-set constraints. Penalties still appear, but serve a different purpose. The proximal distance principle takes a loss function and adds the penalty capturing the squared Euclidean distance of the parameter vector to the sparsity set where at most components of are nonzero. If represents the minimum of the objective , then tends to the constrained minimum of over as tends to . We derive two closely related algorithms to carry out this strategy. Our simulated and real examples vividly demonstrate how the algorithms achieve better sparsity without loss of classification power.
分类中的许多问题都涉及大量无关特征。变量选择能够揭示关键特征,降低特征空间的维度,并改善模型的可解释性。在支持向量机文献中,变量选择是通过惩罚来实现的。这些凸松弛严重地将参数估计偏向于0,并倾向于接纳过多无关特征。本文提出了一种替代方法,即用稀疏集约束取代惩罚。惩罚仍然存在,但作用不同。近端距离原则采用一个损失函数,并加上惩罚项,该惩罚项表示参数向量与稀疏集的欧几里得距离平方,在稀疏集中,最多有 个分量非零。如果 表示目标函数的最小值,那么随着 趋于无穷, 趋于 在 上的约束最小值。我们推导了两种密切相关的算法来执行这一策略。我们的模拟和实际例子生动地展示了这些算法如何在不损失分类能力的情况下实现更好的稀疏性