Suppr超能文献

使用加权惩罚对数似然法估计未分型基因型数据对二分结果的单倍型效应。

Estimating haplotype effects on dichotomous outcome for unphased genotype data using a weighted penalized log-likelihood approach.

作者信息

Souverein Olga W, Zwinderman Aeilko H, Tanck Michael W T

机构信息

Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, Amsterdam, The Netherlands.

出版信息

Hum Hered. 2006;61(2):104-10. doi: 10.1159/000093476. Epub 2006 May 24.

Abstract

OBJECTIVE

To develop a method to estimate haplotype effects on dichotomous outcomes when phase is unknown, that can also estimate reliable effects of rare haplotypes.

METHODS

In short, the method uses a logistic regression approach, with weights attached to all possible haplotype combinations of an individual. An EM-algorithm was used: in the E-step the weights are estimated, and the M-step consists of maximizing the joint log-likelihood. When rare haplotypes were present, a penalty function was introduced. We compared four different penalties. To investigate statistical properties of our method, we performed a simulation study for different scenarios. The evaluation criteria are the mean bias of the parameter estimates, the root of the mean squared error, the coverage probability, power, Type I error rate and the false discovery rate.

RESULTS

For the unpenalized approach, mean bias was small, coverage probabilities were approximately 95%, power ranged from 15.2 to 44.7% depending on haplotype frequency, and Type I error rate was around 5%. All penalty functions reduced the standard errors of the rare haplotypes, but introduced bias. This trade-off decreased power.

CONCLUSION

The unpenalized weighted log-likelihood approach performs well. A penalty function can help to estimate an effect for rare haplotypes.

摘要

目的

开发一种在相位未知时估计单倍型对二分结局影响的方法,该方法还能估计罕见单倍型的可靠效应。

方法

简而言之,该方法采用逻辑回归方法,对个体的所有可能单倍型组合赋予权重。使用了期望最大化(EM)算法:在E步中估计权重,M步包括最大化联合对数似然。当存在罕见单倍型时,引入惩罚函数。我们比较了四种不同的惩罚。为研究我们方法的统计特性,针对不同场景进行了模拟研究。评估标准包括参数估计的平均偏差、均方误差的平方根、覆盖概率、功效、I型错误率和错误发现率。

结果

对于无惩罚方法,平均偏差较小,覆盖概率约为95%,功效根据单倍型频率在15.2%至44.7%之间,I型错误率约为5%。所有惩罚函数均降低了罕见单倍型的标准误差,但引入了偏差。这种权衡降低了功效。

结论

无惩罚加权对数似然方法表现良好。惩罚函数有助于估计罕见单倍型的效应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验