Suppr超能文献

基于惩罚似然的单体型特异性分析的综合方法。

A comprehensive approach to haplotype-specific analysis by penalized likelihood.

机构信息

Department of Statistics, North Carolina State University, Campus Box 7566, Raleigh NC 27695, USA.

出版信息

Eur J Hum Genet. 2010 Jan;18(1):95-103. doi: 10.1038/ejhg.2009.118.

Abstract

Haplotypes can hold key information to understand the role of candidate genes in disease etiology. However, standard haplotype analysis has yet been able to fully reveal the information retained by haplotypes. In most analysis, haplotype inference focuses on relative effects compared with an arbitrarily chosen baseline haplotype. It does not depict the effect structure unless an additional inference procedure is used in a secondary post hoc analysis, and such analysis tends to be lack of power. In this study, we propose a penalized regression approach to systematically evaluate the pattern and structure of the haplotype effects. By specifying an L1 penalty on the pairwise difference of the haplotype effects, we present a model-based haplotype analysis to detect and to characterize the haplotypic association signals. The proposed method avoids the need to choose a baseline haplotype; it simultaneously carries out the effect estimation and effect comparison of all haplotypes, and outputs the haplotype group structure based on their effect size. Finally, our penalty weights are theoretically designed to balance the likelihood and the penalty term in an appropriate manner. The proposed method can be used as a tool to comprehend candidate regions identified from a genome or chromosomal scan. Simulation studies reveal the better abilities of the proposed method to identify the haplotype effect structure compared with the traditional haplotype association methods, demonstrating the informativeness and powerfulness of the proposed method.

摘要

单体型可以提供关键信息,帮助理解候选基因在疾病发病机制中的作用。然而,标准的单体型分析尚未能够充分揭示单体型所保留的信息。在大多数分析中,单体型推断侧重于与任意选择的基线单体型相比的相对效应。除非在二次事后分析中使用额外的推断程序,否则它不会描绘效应结构,而这种分析往往缺乏效力。在这项研究中,我们提出了一种惩罚回归方法,以系统地评估单体型效应的模式和结构。通过在单体型效应的成对差异上指定 L1 惩罚,我们提出了一种基于模型的单体型分析方法,以检测和描述单体型关联信号。所提出的方法避免了选择基线单体型的需要;它同时对所有单体型进行效应估计和效应比较,并根据其效应大小输出单体型组结构。最后,我们的惩罚权重是理论上设计的,以适当的方式平衡似然和惩罚项。该方法可以作为理解基因组或染色体扫描中确定的候选区域的工具。模拟研究表明,与传统的单体型关联方法相比,所提出的方法具有更好的识别单体型效应结构的能力,证明了所提出的方法的信息性和强大性。

相似文献

引用本文的文献

2
High-frequency marker haplotypes in the genomic selection of dairy cattle.奶牛基因组选择中的高频标记单倍型
J Appl Genet. 2019 May;60(2):179-186. doi: 10.1007/s13353-019-00489-9. Epub 2019 Mar 15.
9
Multilocus association testing with penalized regression.基于惩罚回归的多位点关联分析。
Genet Epidemiol. 2011 Dec;35(8):755-65. doi: 10.1002/gepi.20625. Epub 2011 Sep 15.

本文引用的文献

3
Simultaneous factor selection and collapsing levels in ANOVA.方差分析中的同时因子选择与水平合并
Biometrics. 2009 Mar;65(1):169-77. doi: 10.1111/j.1541-0420.2008.01061.x. Epub 2008 May 28.
8
WHAP: haplotype-based association analysis.WHAP:基于单倍型的关联分析。
Bioinformatics. 2007 Jan 15;23(2):255-6. doi: 10.1093/bioinformatics/btl580. Epub 2006 Nov 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验