Department of Statistics, North Carolina State University, Campus Box 7566, Raleigh NC 27695, USA.
Eur J Hum Genet. 2010 Jan;18(1):95-103. doi: 10.1038/ejhg.2009.118.
Haplotypes can hold key information to understand the role of candidate genes in disease etiology. However, standard haplotype analysis has yet been able to fully reveal the information retained by haplotypes. In most analysis, haplotype inference focuses on relative effects compared with an arbitrarily chosen baseline haplotype. It does not depict the effect structure unless an additional inference procedure is used in a secondary post hoc analysis, and such analysis tends to be lack of power. In this study, we propose a penalized regression approach to systematically evaluate the pattern and structure of the haplotype effects. By specifying an L1 penalty on the pairwise difference of the haplotype effects, we present a model-based haplotype analysis to detect and to characterize the haplotypic association signals. The proposed method avoids the need to choose a baseline haplotype; it simultaneously carries out the effect estimation and effect comparison of all haplotypes, and outputs the haplotype group structure based on their effect size. Finally, our penalty weights are theoretically designed to balance the likelihood and the penalty term in an appropriate manner. The proposed method can be used as a tool to comprehend candidate regions identified from a genome or chromosomal scan. Simulation studies reveal the better abilities of the proposed method to identify the haplotype effect structure compared with the traditional haplotype association methods, demonstrating the informativeness and powerfulness of the proposed method.
单体型可以提供关键信息,帮助理解候选基因在疾病发病机制中的作用。然而,标准的单体型分析尚未能够充分揭示单体型所保留的信息。在大多数分析中,单体型推断侧重于与任意选择的基线单体型相比的相对效应。除非在二次事后分析中使用额外的推断程序,否则它不会描绘效应结构,而这种分析往往缺乏效力。在这项研究中,我们提出了一种惩罚回归方法,以系统地评估单体型效应的模式和结构。通过在单体型效应的成对差异上指定 L1 惩罚,我们提出了一种基于模型的单体型分析方法,以检测和描述单体型关联信号。所提出的方法避免了选择基线单体型的需要;它同时对所有单体型进行效应估计和效应比较,并根据其效应大小输出单体型组结构。最后,我们的惩罚权重是理论上设计的,以适当的方式平衡似然和惩罚项。该方法可以作为理解基因组或染色体扫描中确定的候选区域的工具。模拟研究表明,与传统的单体型关联方法相比,所提出的方法具有更好的识别单体型效应结构的能力,证明了所提出的方法的信息性和强大性。