Kielland Anders, Erisir Alev, Walaas S Ivar, Heggelund Paul
Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway.
J Neurosci. 2006 May 24;26(21):5786-93. doi: 10.1523/JNEUROSCI.4631-05.2006.
Several proteins in nerve terminals participate in synaptic transmission between neurons. The synapsins, which are synaptic vesicle-associated proteins, have widespread distribution in the brain and are assumed essential for sustained recruitment of vesicles during high rates of synaptic transmission. We compared the role of synapsins in two types of glutamatergic synapses on thalamocortical cells in the dorsal lateral geniculate nucleus of mice: retinogeniculate synapses, which transmit primary afferent input at high frequencies and show synaptic depression, and corticogeniculate synapses, which provide modulatory feedback at lower frequencies and show synaptic facilitation. We used electrophysiological methods to determine effects of gene knock-out of synapsin I and II on short-term synaptic plasticity in paired-pulse, pulse-train, and posttetanic potentiation paradigms. The gene inactivation changed the plasticity properties in corticogeniculate, but not in retinogeniculate, synapses. Immunostaining with antibodies against synapsins in wild-type mice demonstrated that neither synapsin I nor II occurred in retinogeniculate terminals, whereas both occurred in corticogeniculate terminals. In GABAergic terminals, only synapsin I occurred. In corticogeniculate terminals of knock-out mice, the density of synaptic vesicles was reduced because of increased terminal size rather than reduced number of vesicles and the intervesicle distance was increased compared with wild-type mice. In the retinogeniculate terminals, no significant morphometric differences occurred between knock-out and wild-type mice. Together, this indicates that synapsin I and II are not present in the retinogeniculate terminals and therefore are not essential for sustained, high-rate synaptic transmission.
神经末梢中的几种蛋白质参与神经元之间的突触传递。突触结合蛋白是与突触小泡相关的蛋白质,在大脑中广泛分布,被认为在高速突触传递过程中持续募集小泡是必不可少的。我们比较了突触结合蛋白在小鼠背外侧膝状核丘脑皮质细胞上两种谷氨酸能突触中的作用:视网膜膝状体突触,它以高频传递初级传入输入并表现出突触抑制;皮质膝状体突触,它以较低频率提供调节性反馈并表现出突触易化。我们使用电生理方法来确定突触结合蛋白I和II基因敲除对配对脉冲、脉冲串和强直后增强范式中短期突触可塑性的影响。基因失活改变了皮质膝状体突触的可塑性特性,但未改变视网膜膝状体突触的可塑性特性。用针对野生型小鼠突触结合蛋白的抗体进行免疫染色表明,视网膜膝状体末梢中既没有突触结合蛋白I也没有突触结合蛋白II,而两者都存在于皮质膝状体末梢中。在GABA能末梢中,只存在突触结合蛋白I。在基因敲除小鼠的皮质膝状体末梢中,由于末梢大小增加,突触小泡密度降低,而不是小泡数量减少,并且与野生型小鼠相比,小泡间距离增加。在视网膜膝状体末梢中,基因敲除小鼠和野生型小鼠之间没有明显的形态学差异。总之,这表明视网膜膝状体末梢中不存在突触结合蛋白I和II,因此对于持续的高速突触传递不是必需的。