Department of Physiology and Cell Biology, Faculty of Health Sciences, and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, and.
Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
J Neurosci. 2015 Jan 21;35(3):985-98. doi: 10.1523/JNEUROSCI.0944-14.2015.
Synaptic transmission is expensive in terms of its energy demands and was recently shown to decrease the ATP concentration within presynaptic terminals transiently, an observation that we confirm. We hypothesized that, in addition to being an energy source, ATP may modulate the synapsins directly. Synapsins are abundant neuronal proteins that associate with the surface of synaptic vesicles and possess a well defined ATP-binding site of undetermined function. To examine our hypothesis, we produced a mutation (K270Q) in synapsin IIa that prevents ATP binding and reintroduced the mutant into cultured mouse hippocampal neurons devoid of all synapsins. Remarkably, staining for synaptic vesicle markers was enhanced in these neurons compared with neurons expressing wild-type synapsin IIa, suggesting overly efficient clustering of vesicles. In contrast, the mutation completely disrupted the capability of synapsin IIa to slow synaptic depression during sustained 10 Hz stimulation, indicating that it interfered with synapsin-dependent vesicle recruitment. Finally, we found that the K270Q mutation attenuated the phosphorylation of synapsin IIa on a distant PKA/CaMKI consensus site known to be essential for vesicle recruitment. We conclude that ATP binding to synapsin IIa plays a key role in modulating its function and in defining its contribution to hippocampal short-term synaptic plasticity.
突触传递在能量需求方面代价高昂,最近有研究表明,它会使突触前末梢内的 ATP 浓度短暂降低,我们证实了这一观察结果。我们假设,除了作为能量源之外,ATP 还可能直接调节突触蛋白。突触蛋白是丰富的神经元蛋白,与突触小泡的表面结合,并具有一个功能尚未确定的明确的 ATP 结合位点。为了检验我们的假设,我们在突触蛋白 IIa 中产生了一个突变(K270Q),使其无法结合 ATP,并将突变体重新引入缺乏所有突触蛋白的培养的小鼠海马神经元中。值得注意的是,与表达野生型突触蛋白 IIa 的神经元相比,这些神经元中突触小泡标记物的染色增强,表明小泡过度有效地聚集。相比之下,该突变完全破坏了突触蛋白 IIa 在持续 10 Hz 刺激期间减缓突触抑制的能力,表明它干扰了突触蛋白依赖的小泡募集。最后,我们发现 K270Q 突变削弱了对囊泡募集至关重要的一个遥远的 PKA/CaMKI 共识位点上突触蛋白 IIa 的磷酸化。我们的结论是,ATP 与突触蛋白 IIa 的结合在调节其功能以及确定其对海马体短期突触可塑性的贡献方面起着关键作用。