Xiang Jie, Lu Wei, Hu Yongjie, Wu Yue, Yan Hao, Lieber Charles M
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Nature. 2006 May 25;441(7092):489-93. doi: 10.1038/nature04796.
Semiconducting carbon nanotubes and nanowires are potential alternatives to planar metal-oxide-semiconductor field-effect transistors (MOSFETs) owing, for example, to their unique electronic structure and reduced carrier scattering caused by one-dimensional quantum confinement effects. Studies have demonstrated long carrier mean free paths at room temperature in both carbon nanotubes and Ge/Si core/shell nanowires. In the case of carbon nanotube FETs, devices have been fabricated that work close to the ballistic limit. Applications of high-performance carbon nanotube FETs have been hindered, however, by difficulties in producing uniform semiconducting nanotubes, a factor not limiting nanowires, which have been prepared with reproducible electronic properties in high yield as required for large-scale integrated systems. Yet whether nanowire field-effect transistors (NWFETs) can indeed outperform their planar counterparts is still unclear. Here we report studies on Ge/Si core/shell nanowire heterostructures configured as FETs using high-kappa dielectrics in a top-gate geometry. The clean one-dimensional hole-gas in the Ge/Si nanowire heterostructures and enhanced gate coupling with high-kappa dielectrics give high-performance FETs values of the scaled transconductance (3.3 mS microm(-1)) and on-current (2.1 mA microm(-1)) that are three to four times greater than state-of-the-art MOSFETs and are the highest obtained on NWFETs. Furthermore, comparison of the intrinsic switching delay, tau = CV/I, which represents a key metric for device applications, shows that the performance of Ge/Si NWFETs is comparable to similar length carbon nanotube FETs and substantially exceeds the length-dependent scaling of planar silicon MOSFETs.
半导体碳纳米管和纳米线是平面金属氧化物半导体场效应晶体管(MOSFET)的潜在替代品,例如,这归因于它们独特的电子结构以及由一维量子限制效应导致的载流子散射减少。研究表明,碳纳米管和锗/硅核壳纳米线在室温下都具有较长的载流子平均自由程。就碳纳米管场效应晶体管而言,已经制造出了接近弹道极限工作的器件。然而,高性能碳纳米管场效应晶体管的应用受到了生产均匀半导体纳米管困难的阻碍,而这一因素并不限制纳米线,纳米线已按照大规模集成系统的要求以高产量可重复制备出具有可再现电子特性的产品。然而,纳米线场效应晶体管(NWFET)是否真的能超越其平面同类器件仍不明确。在此,我们报告了对采用顶栅几何结构中的高介电常数电介质配置为场效应晶体管的锗/硅核壳纳米线异质结构的研究。锗/硅纳米线异质结构中纯净的一维空穴气以及与高介电常数电介质增强的栅极耦合,使得高性能场效应晶体管的标度跨导(3.3 mS·μm⁻¹)和导通电流(2.1 mA·μm⁻¹)值比最先进的MOSFET大三到四倍,并且是在NWFET上获得的最高值。此外,对本征开关延迟τ = CV/I(它代表器件应用的一个关键指标)的比较表明,锗/硅NWFET的性能与类似长度的碳纳米管场效应晶体管相当,并且大大超过了平面硅MOSFET的长度依赖性标度。