Suppr超能文献

椎间盘的渗透粘弹性有限元模型

Osmoviscoelastic finite element model of the intervertebral disc.

作者信息

Schroeder Yvonne, Wilson Wouter, Huyghe Jacques M, Baaijens Frank P T

机构信息

Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.

出版信息

Eur Spine J. 2006 Aug;15 Suppl 3(Suppl 3):S361-71. doi: 10.1007/s00586-006-0110-3. Epub 2006 May 25.

Abstract

Intervertebral discs have a primarily mechanical role in transmitting loads through the spine. The disc is subjected to a combination of elastic, viscous and osmotic forces; previous 3D models of the disc have typically neglected osmotic forces. The fibril-reinforced poroviscoelastic swelling model, which our group has recently developed, is used to compute the interplay of osmotic, viscous and elastic forces in an intervertebral disc under axial compressive load. The unloaded 3D finite element mesh equilibrates in a physiological solution, and exhibits an intradiscal pressure of about 0.2 MPa. Before and after axial loading the numerically simulated hydrostatic pressure compares well with the experimental ranges measured. Loading the disc decreased the height of the disc and results in an outward bulging of the outer annulus. Fiber stresses were highest on the most outward bulging on the posterior-lateral side. The osmotic forces resulted in tensile hoop stresses, which were higher than typical values in a non-osmotic disc. The computed axial stress profiles reproduced the main features of the stress profiles, in particular the characteristic posterior and anterior stress which were observed experimentally.

摘要

椎间盘在通过脊柱传递负荷方面主要起机械作用。椎间盘受到弹性、粘性和渗透力的共同作用;以往的椎间盘三维模型通常忽略了渗透力。我们团队最近开发的纤维增强多孔粘弹性肿胀模型,用于计算轴向压缩载荷下椎间盘中渗透力、粘滞力和弹性力的相互作用。未加载的三维有限元网格在生理溶液中达到平衡,椎间盘内压力约为0.2兆帕。在轴向加载前后,数值模拟的静水压力与实测的实验范围吻合良好。对椎间盘加载会降低椎间盘高度,并导致外环向外膨出。纤维应力在后外侧最向外膨出处最高。渗透力导致环向拉应力,其高于非渗透椎间盘的典型值。计算得到的轴向应力分布再现了应力分布的主要特征,特别是实验观察到的特征性前后应力。

相似文献

1
Osmoviscoelastic finite element model of the intervertebral disc.
Eur Spine J. 2006 Aug;15 Suppl 3(Suppl 3):S361-71. doi: 10.1007/s00586-006-0110-3. Epub 2006 May 25.
2
Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs.
J Mech Behav Biomed Mater. 2011 Oct;4(7):1234-41. doi: 10.1016/j.jmbbm.2011.04.008. Epub 2011 Apr 16.
3
The risk of disc prolapses with complex loading in different degrees of disc degeneration - a finite element analysis.
Clin Biomech (Bristol). 2007 Nov;22(9):988-98. doi: 10.1016/j.clinbiomech.2007.07.008. Epub 2007 Sep 5.
4
Finite element modeling of the cervical spine: role of intervertebral disc under axial and eccentric loads.
Med Eng Phys. 1999 Dec;21(10):689-700. doi: 10.1016/s1350-4533(00)00002-3.
5
A mathematical model of the compression of a spinal disc.
Math Biosci Eng. 2011 Oct 1;8(4):1061-83. doi: 10.3934/mbe.2011.8.1061.
8
A multibody modelling approach to determine load sharing between passive elements of the lumbar spine.
Comput Methods Biomech Biomed Engin. 2011 Jun;14(6):527-37. doi: 10.1080/10255842.2010.485568.
9
[Effects of novel angled cervical disc replacement on facet joint stress].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2012 Apr;26(4):390-5.

引用本文的文献

1
Modeling the Effect of Annulus Fibrosus Stiffness on the Stressed State of a Vertebral L1 Body and Nucleus Pulposus.
Bioengineering (Basel). 2024 Mar 24;11(4):305. doi: 10.3390/bioengineering11040305.
2
A quadriphasic mechanical model of the human dermis.
Biomech Model Mechanobiol. 2024 Aug;23(4):1121-1136. doi: 10.1007/s10237-024-01827-5. Epub 2024 Mar 15.
5
Interlamellar matrix governs human annulus fibrosus multiaxial behavior.
Sci Rep. 2020 Nov 9;10(1):19292. doi: 10.1038/s41598-020-74107-8.
6
Application of Simulation Methods in Cervical Spine Dynamics.
J Healthc Eng. 2020 Aug 31;2020:7289648. doi: 10.1155/2020/7289648. eCollection 2020.
7
Is there any advantage of using stand-alone cages? A numerical approach.
Biomed Eng Online. 2019 May 22;18(1):63. doi: 10.1186/s12938-019-0684-8.
9
Tissue Engineering a Biological Repair Strategy for Lumbar Disc Herniation.
Biores Open Access. 2015 Nov 1;4(1):431-45. doi: 10.1089/biores.2015.0034. eCollection 2015.
10
On the Use of Biaxial Properties in Modeling Annulus as a Holzapfel-Gasser-Ogden Material.
Front Bioeng Biotechnol. 2015 Jun 3;3:69. doi: 10.3389/fbioe.2015.00069. eCollection 2015.

本文引用的文献

1
Influence of osmotic pressure changes on the opening of existing cracks in 2 intervertebral disc models.
Spine (Phila Pa 1976). 2006 Jul 15;31(16):1783-8. doi: 10.1097/01.brs.0000227267.42924.bb.
2
Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs.
J Biomech. 2007;40(1):55-63. doi: 10.1016/j.jbiomech.2005.11.013. Epub 2006 Jan 19.
5
A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
J Biomech. 2005 Jun;38(6):1195-204. doi: 10.1016/j.jbiomech.2004.07.003.
6
Recent advances in analytical modeling of lumbar disc degeneration.
Spine (Phila Pa 1976). 2004 Dec 1;29(23):2733-41. doi: 10.1097/01.brs.0000146471.59052.e6.
7
Biaxial testing of human annulus fibrosus and its implications for a constitutive formulation.
Ann Biomed Eng. 2004 Sep;32(9):1231-42. doi: 10.1114/b:abme.0000039357.70905.94.
8
Poroelastic analysis of lumbar spinal stability in combined compression and anterior shear.
J Spinal Disord Tech. 2004 Oct;17(5):429-38. doi: 10.1097/01.bsd.0000109835.59382.9c.
9
Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus.
J Orthop Res. 2004 Jul;22(4):901-9. doi: 10.1016/j.orthres.2003.12.012.
10
A nonlinear hyperelastic mixture theory model for anisotropy, transport, and swelling of annulus fibrosus.
Ann Biomed Eng. 2004 Jan;32(1):92-102. doi: 10.1023/b:abme.0000007794.87408.1e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验