Suppr超能文献

使用神经网络估计手机用户的相对暴露水平。

Estimation of relative exposure levels for cellular phone users using a neural network.

作者信息

Kim Soo Chan, Nam Ki Chang, Kim Deok Won

机构信息

Graduate School of Bio and Information Technology, Hankyong National University, Anseong, Korea.

出版信息

Bioelectromagnetics. 2006 Sep;27(6):440-4. doi: 10.1002/bem.20203.

Abstract

The wide and growing use of cellular phones has raised questions about the possible health risks associated with radio frequency (RF) electromagnetic fields. It would be helpful for epidemiologists as well as cellular phone users to obtain the relative exposure levels, because the RF exposure level is very difficult to accurately measure and quantify for all individuals. In this study, a neural network model was developed to estimate relative exposure levels on a scale of 0-10 and thus rank the individual risk of exposure using available information. We used parameters such as usage time per day, total usage period, hands-free usage, extension of antenna, specific absorption rate (SAR) of the cellular phone, and flip or folder type, which are related to RF exposure. Using the relative exposure levels obtained from this model, epidemiologists can divide the subjects into exposed and nonexposed groups in a study investigating the relationship between exposure level and brain cancer in the future, provided that more knowledge between the cellular phone usage pattern and the exposure is available.

摘要

移动电话的广泛且日益增长的使用引发了有关与射频(RF)电磁场相关的潜在健康风险的问题。获取相对暴露水平对流行病学家以及移动电话用户都会有所帮助,因为对所有个体而言,射频暴露水平很难准确测量和量化。在本研究中,开发了一种神经网络模型,以在0至10的范围内估计相对暴露水平,从而利用现有信息对个体暴露风险进行排名。我们使用了诸如每日使用时间、总使用时长、免提使用、天线延长、移动电话的比吸收率(SAR)以及翻盖或折叠类型等与射频暴露相关的参数。利用从该模型获得的相对暴露水平,流行病学家在未来一项调查暴露水平与脑癌之间关系的研究中,可以将受试者分为暴露组和非暴露组,前提是能获得更多关于移动电话使用模式与暴露之间的知识。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验