Shultz J L, Yesudas C, Yaegashi S, Afzal A J, Kazi S, Lightfoot D A
Dept of Soybean Genetics, United States Department of Agriculture, Stoneville, MS 38776, USA.
Plant Methods. 2006 May 25;2:9. doi: 10.1186/1746-4811-2-9.
The creation of minimally redundant tile paths (hereafter MTP) from contiguous sets of overlapping clones (hereafter contigs) in physical maps is a critical step for structural and functional genomics. Build 4 of the physical map of soybean (Glycine max L. Merr. cv. 'Forrest') showed the 1 Gbp haploid genome was composed of 0.7 Gbp diploid, 0.1 Gbp tetraploid and 0.2 Gbp octoploid regions. Therefore, the size of the unique genome was about 0.8 Gbp. The aim here was to create MTP sub-libraries from the soybean cv. Forrest physical map builds 2 to 4.
The first MTP, named MTP2, was 14,208 clones (of mean insert size 140 kbp) picked from the 5,597 contigs of build 2. MTP2 was constructed from three BAC libraries (BamHI (B), HindIII (H) and EcoRI (E) inserts). MTP2 encompassed the contigs of build 3 that derived from build 2 by a series of contig merges. MTP2 encompassed 2 Gbp compared to the soybean haploid genome of 1 Gbp and does not distinguish regions by ploidy. The second and third MTPs, called MTP4BH and MTP4E, were each based on build 4. Each was semi-automatically selected from 2,854 contigs. MTP4BH was 4,608 B and H insert clones of mean size 173 kbp in the large (27.6 kbp) T-DNA vector pCLD04541. MTP4BH was suitable for plant transformation and functional genomics. MTP4E was 4,608 BAC clones with large inserts (mean 175 kbp) in the small (7.5 kbp) pECBAC1 vector. MTP4E was suitable for DNA sequencing. MTP4BH and MTP4E clones each encompassed about 0.8 Gbp, the 0.7 Gbp diploid regions and 0.05 Gbp each from the tetraploid and octoploid regions. MTP2 and MTP4BH were used for BAC-end sequencing, EST integration, micro-satellite integration into the physical map and high information content fingerprinting. MTP4E will be used for genome sequence by pooled genomic clone index.
Each MTP and associated BES will be useful to deconvolute and ultimately finish the whole genome shotgun sequence of soybean.
从物理图谱中连续的重叠克隆集(以下简称重叠群)创建最小冗余片段路径(以下简称MTP)是结构和功能基因组学的关键步骤。大豆(Glycine max L. Merr. cv. 'Forrest')物理图谱第4版显示,1 Gbp的单倍体基因组由0.7 Gbp的二倍体、0.1 Gbp的四倍体和0.2 Gbp的八倍体区域组成。因此,独特基因组的大小约为0.8 Gbp。此处的目的是从大豆cv. Forrest物理图谱第2版至第4版创建MTP亚文库。
第一个MTP名为MTP2,由从第2版的5597个重叠群中挑选出的14208个克隆(平均插入片段大小为140 kbp)组成。MTP2由三个BAC文库(BamHI(B)、HindIII(H)和EcoRI(E)插入片段)构建而成。MTP2包含通过一系列重叠群合并从第2版衍生而来的第3版的重叠群。与1 Gbp的大豆单倍体基因组相比,MTP2覆盖了2 Gbp,且未按倍性区分区域。第二个和第三个MTP分别称为MTP4BH和MTP4E,均基于第4版构建。每个都是从2854个重叠群中半自动选择的。MTP4BH是在大型(27.6 kbp)T-DNA载体pCLD04541中的4608个B和H插入片段克隆,平均大小为173 kbp。MTP4BH适用于植物转化和功能基因组学。MTP4E是在小型(7.5 kbp)pECBAC1载体中的4608个BAC克隆,插入片段较大(平均175 kbp)。MTP4E适用于DNA测序。MTP4BH和MTP4E克隆各自覆盖约0.8 Gbp,即0.7 Gbp的二倍体区域以及四倍体和八倍体区域各0.05 Gbp。MTP2和MTP4BH用于BAC末端测序、EST整合、微卫星整合到物理图谱以及高信息含量指纹图谱分析。MTP4E将用于通过合并基因组克隆索引进行基因组测序。
每个MTP及其相关的BAC末端序列对于解析并最终完成大豆的全基因组鸟枪法测序将是有用的。