文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

大麦(Hordeum vulgare L.)基于图谱克隆和物理图谱构建的 BAC 文库资源。

BAC library resources for map-based cloning and physical map construction in barley (Hordeum vulgare L.).

机构信息

Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr, 3, 06466 Gatersleben, Germany.

出版信息

BMC Genomics. 2011 May 19;12:247. doi: 10.1186/1471-2164-12-247.


DOI:10.1186/1471-2164-12-247
PMID:21595870
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3224359/
Abstract

BACKGROUND: Although second generation sequencing (2GS) technologies allow re-sequencing of previously gold-standard-sequenced genomes, whole genome shotgun sequencing and de novo assembly of large and complex eukaryotic genomes is still difficult. Availability of a genome-wide physical map is therefore still a prerequisite for whole genome sequencing for genomes like barley. To start such an endeavor, large insert genomic libraries, i.e. Bacterial Artificial Chromosome (BAC) libraries, which are unbiased and representing deep haploid genome coverage, need to be ready in place. RESULT: Five new BAC libraries were constructed for barley (Hordeum vulgare L.) cultivar Morex. These libraries were constructed in different cloning sites (HindIII, EcoRI, MboI and BstXI) of the respective vectors. In order to enhance unbiased genome representation and to minimize the number of gaps between BAC contigs, which are often due to uneven distribution of restriction sites, a mechanically sheared library was also generated. The new BAC libraries were fully characterized in depth by scrutinizing the major quality parameters such as average insert size, degree of contamination (plate wide, neighboring, and chloroplast), empty wells and off-scale clones (clones with <30 or >250 fragments). Additionally a set of gene-based probes were hybridized to high density BAC filters and showed that genome coverage of each library is between 2.4 and 6.6 X. CONCLUSION: BAC libraries representing >20 haploid genomes are available as a new resource to the barley research community. Systematic utilization of these libraries in high-throughput BAC fingerprinting should allow developing a genome-wide physical map for the barley genome, which will be instrumental for map-based gene isolation and genome sequencing.

摘要

背景:尽管第二代测序(2GS)技术允许对以前经过金标准测序的基因组进行重新测序,但对大型和复杂真核生物基因组进行全基因组鸟枪法测序和从头组装仍然具有挑战性。因此,对于大麦等基因组而言,获得全基因组物理图谱仍然是全基因组测序的前提条件。为了开始进行此类工作,需要准备好能够代表单倍体基因组深度覆盖的大片段基因组文库,即细菌人工染色体(BAC)文库。

结果:为大麦(Hordeum vulgare L.)品种 Morex 构建了 5 个新的 BAC 文库。这些文库构建在各自载体的不同克隆位点(HindIII、EcoRI、MboI 和 BstXI)上。为了增强基因组代表性的无偏性并最大程度地减少 BAC contigs 之间的缺口数量,这些缺口通常是由于限制性位点分布不均匀所致,还生成了一个机械剪切的文库。通过仔细检查主要质量参数,如平均插入大小、污染程度(平板宽、相邻和叶绿体)、空孔和超出范围的克隆(<30 或>250 个片段的克隆),对新的 BAC 文库进行了全面深入的特征描述。此外,一组基于基因的探针与高密度 BAC 过滤器杂交,表明每个文库的基因组覆盖度在 2.4 到 6.6 X 之间。

结论:代表>20 个单倍体基因组的 BAC 文库已作为大麦研究界的新资源提供。系统地利用这些文库进行高通量 BAC 指纹图谱分析,应该能够为大麦基因组构建全基因组物理图谱,这对于基于图谱的基因分离和基因组测序将是非常重要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a660/3224359/f69d95b9ca7c/1471-2164-12-247-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a660/3224359/f6f0e79dbc2d/1471-2164-12-247-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a660/3224359/3f0611af86ce/1471-2164-12-247-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a660/3224359/3bcf5e696db7/1471-2164-12-247-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a660/3224359/f69d95b9ca7c/1471-2164-12-247-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a660/3224359/f6f0e79dbc2d/1471-2164-12-247-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a660/3224359/3f0611af86ce/1471-2164-12-247-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a660/3224359/3bcf5e696db7/1471-2164-12-247-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a660/3224359/f69d95b9ca7c/1471-2164-12-247-4.jpg

相似文献

[1]
BAC library resources for map-based cloning and physical map construction in barley (Hordeum vulgare L.).

BMC Genomics. 2011-5-19

[2]
Generation of a BAC-based physical map of the melon genome.

BMC Genomics. 2010-5-28

[3]
Construction and characterization of a soybean bacterial artificial chromosome library and use of multiple complementary libraries for genome physical mapping.

Theor Appl Genet. 2004-9

[4]
Physical mapping of a large plant genome using global high-information-content-fingerprinting: the distal region of the wheat ancestor Aegilops tauschii chromosome 3DS.

BMC Genomics. 2010-6-17

[5]
Direct targeting and rapid isolation of BAC clones spanning a defined chromosome region.

Funct Integr Genomics. 2005-4

[6]
Genomic tools development for Aquilegia: construction of a BAC-based physical map.

BMC Genomics. 2010-11-8

[7]
Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization.

Plant Physiol. 2002-12

[8]
Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species.

BMC Genomics. 2010-2-19

[9]
A BAC/BIBAC-based physical map of chickpea, Cicer arietinum L.

BMC Genomics. 2010-9-17

[10]
Sequencing of 15 622 gene-bearing BACs clarifies the gene-dense regions of the barley genome.

Plant J. 2015-10

引用本文的文献

[1]
Genotyping by Sequencing Advancements in Barley.

Front Plant Sci. 2022-8-8

[2]
History and future perspectives of barley genomics.

DNA Res. 2020-8-1

[3]
A Tale of Two Families: Whole Genome and Segmental Duplications Underlie Glutamine Synthetase and Phosphoenolpyruvate Carboxylase Diversity in Narrow-Leafed Lupin ( L.).

Int J Mol Sci. 2020-4-8

[4]
Leaf Variegation and Impaired Chloroplast Development Caused by a Truncated CCT Domain Gene in Barley.

Plant Cell. 2019-4-25

[5]
Construction and characterization of a bacterial artificial chromosome library for Gossypium mustelinum.

PLoS One. 2018-5-17

[6]
Mutations in the gene of the Gα subunit of the heterotrimeric G protein are the cause for the semi-dwarf phenotype in barley and applicable for practical breeding.

Hereditas. 2017-9-5

[7]
Construction of a map-based reference genome sequence for barley, Hordeum vulgare L.

Sci Data. 2017-4-27

[8]
A Homolog of Blade-On-Petiole 1 and 2 (BOP1/2) Controls Internode Length and Homeotic Changes of the Barley Inflorescence.

Plant Physiol. 2016-6

[9]
The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes.

J Exp Bot. 2016-4

[10]
Multiplex sequencing of bacterial artificial chromosomes for assembling complex plant genomes.

Plant Biotechnol J. 2016-7

本文引用的文献

[1]
Generation of a BAC-based physical map of the melon genome.

BMC Genomics. 2010-5-28

[2]
Genome sequencing and analysis of the model grass Brachypodium distachyon.

Nature. 2010-2-11

[3]
The B73 maize genome: complexity, diversity, and dynamics.

Science. 2009-11-20

[4]
The physical and genetic framework of the maize B73 genome.

PLoS Genet. 2009-11-20

[5]
Detailed analysis of a contiguous 22-Mb region of the maize genome.

PLoS Genet. 2009-11-20

[6]
The Sorghum bicolor genome and the diversification of grasses.

Nature. 2009-1-29

[7]
The international barley sequencing consortium--at the threshold of efficient access to the barley genome.

Plant Physiol. 2009-1

[8]
A physical map of the 1-gigabase bread wheat chromosome 3B.

Science. 2008-10-3

[9]
The first generation of a BAC-based physical map of Brassica rapa.

BMC Genomics. 2008-6-12

[10]
Construction of a BAC library and mapping BAC clones to the linkage map of Barramundi, Lates calcarifer.

BMC Genomics. 2008-3-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索