Suppr超能文献

Influence of dehydration on the expression of neuropeptide Y Y1 receptors in hypothalamic magnocellular neurons.

作者信息

Urban Janice H, Leitermann Randy J, DeJoseph M Regina, Somponpun Suwit J, Wolak Michael L, Sladek Celia D

机构信息

Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, USA.

出版信息

Endocrinology. 2006 Sep;147(9):4122-31. doi: 10.1210/en.2006-0377. Epub 2006 May 25.

Abstract

Regulation of vasopressin (VP) and oxytocin (OT) secretion involves integration of neural signals from hypothalamic osmoreceptors, ascending catecholaminergic and peptidergic cell groups in the brain stem, and local and autoregulatory afferents. Neuropeptide Y (NPY) is one factor that stimulates the release of VP and OT from the supraoptic (SON) and paraventricular nuclei of the hypothalamus via activation of Y1 receptors (Y1R). The current studies were designed to assess the regulation and distribution of NPY Y1R expression in the SON of male rats that were either given 2% NaCl drinking water (24-72 h) or water deprived (48 h). Subjecting male rats to these conditions resulted in significant increases in both the number of cells expressing Y1R immunoreactivity (ir) and the amount of Y1R protein per cell within the SON. Y1R immunoreactivity was increased in the magnocellular but not medial parvocellular paraventricular nuclei, and Y1R mRNA levels were increased in the SON of salt-loaded rats. Subpopulations of both VP and OT cells in the hypothalamus express Y1R immunoreactivity and a greater percentage of VP-ir cells express Y1R after salt loading. To control for potential effects of dehydration-induced anorexia, a group of euhydrate animals was pair fed with animals consuming 2% NaCl. No detectable change in Y1R expression was observed in the SON of pair-fed animals, even though body weights were significantly lower than controls. These data demonstrate that NPY Y1R gene and protein expression are increased in the SON of salt-loaded and water-deprived animals and provide a mechanism whereby NPY can support VP/OT release during prolonged challenges to fluid homeostasis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验