Suppr超能文献

以分子扩散作为突触可塑性中Ca2+信号解码器的局部信号传导。

Local signaling with molecular diffusion as a decoder of Ca2+ signals in synaptic plasticity.

作者信息

Naoki Honda, Sakumura Yuichi, Ishii Shin

机构信息

Graduate School of Information Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan.

出版信息

Mol Syst Biol. 2005;1:2005.0027. doi: 10.1038/msb4100035. Epub 2005 Dec 13.

Abstract

Synaptic plasticity is induced by the influx of calcium ions (Ca2+) through N-methyl-D-aspartate receptors (NMDARs), and the direction and strength of the response depend on the frequency of the synaptic inputs. Recent studies have shown that the direction of synaptic plasticity is also governed by two distinct NMDAR subtypes (NR1/NR2A, NR1/NR2B). How are the different types of regulation (frequency-dependent and receptor-specific) processed simultaneously? To clarify the molecular basis of this dual dependence of synaptic plasticity, we have developed a mathematical model of spatial Ca2+ signaling in a dendritic spine. Our simulations revealed that calmodulin (CaM) activation in the vicinity of NMDARs is strongly affected by the diffusion coefficient of CaM itself, and that this 'local CaM diffusion system' works as a dual decoder of both the frequency of Ca2+ influxes and their postsynaptic current shapes, generated by two NMDAR subtypes, implying that spatial factors may underlie the complicated regulation scheme of synaptic plasticity.

摘要

突触可塑性是由钙离子(Ca2+)通过N-甲基-D-天冬氨酸受体(NMDARs)内流诱导产生的,其反应的方向和强度取决于突触输入的频率。最近的研究表明,突触可塑性的方向还受两种不同的NMDAR亚型(NR1/NR2A、NR1/NR2B)调控。不同类型的调控(频率依赖性和受体特异性)是如何同时进行处理的?为了阐明突触可塑性这种双重依赖性的分子基础,我们构建了一个树突棘中空间Ca2+信号传导的数学模型。我们的模拟结果显示,NMDARs附近的钙调蛋白(CaM)激活受到CaM自身扩散系数的强烈影响,并且这种“局部CaM扩散系统”作为由两种NMDAR亚型产生的Ca2+内流频率及其突触后电流形状的双重解码器,这意味着空间因素可能是突触可塑性复杂调控机制的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14da/1681445/0fe64e8af2f6/msb4100035-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验