Suppr超能文献

突触处的分子开关源自受体和激酶的运输。

Molecular switches at the synapse emerge from receptor and kinase traffic.

作者信息

Hayer Arnold, Bhalla Upinder S

机构信息

National Centre for Biological Sciences, Bangalore, India.

出版信息

PLoS Comput Biol. 2005 Jul;1(2):137-54. doi: 10.1371/journal.pcbi.0010020. Epub 2005 Jul 29.

Abstract

Changes in the synaptic connection strengths between neurons are believed to play a role in memory formation. An important mechanism for changing synaptic strength is through movement of neurotransmitter receptors and regulatory proteins to and from the synapse. Several activity-triggered biochemical events control these movements. Here we use computer models to explore how these putative memory-related changes can be stabilised long after the initial trigger, and beyond the lifetime of synaptic molecules. We base our models on published biochemical data and experiments on the activity-dependent movement of a glutamate receptor, AMPAR, and a calcium-dependent kinase, CaMKII. We find that both of these molecules participate in distinct bistable switches. These simulated switches are effective for long periods despite molecular turnover and biochemical fluctuations arising from the small numbers of molecules in the synapse. The AMPAR switch arises from a novel self-recruitment process where the presence of sufficient receptors biases the receptor movement cycle to insert still more receptors into the synapse. The CaMKII switch arises from autophosphorylation of the kinase. The switches may function in a tightly coupled manner, or relatively independently. The latter case leads to multiple stable states of the synapse. We propose that similar self-recruitment cycles may be important for maintaining levels of many molecules that undergo regulated movement, and that these may lead to combinatorial possible stable states of systems like the synapse.

摘要

神经元之间突触连接强度的变化被认为在记忆形成中起作用。改变突触强度的一个重要机制是神经递质受体和调节蛋白在突触内外的移动。几个由活动触发的生化事件控制着这些移动。在这里,我们使用计算机模型来探索这些假定的与记忆相关的变化如何在初始触发很久之后,甚至在突触分子的寿命之外得以稳定。我们的模型基于已发表的生化数据以及关于谷氨酸受体AMPAR和钙依赖性激酶CaMKII的活动依赖性移动的实验。我们发现这两种分子都参与了不同的双稳态开关。尽管存在分子更新以及由于突触中分子数量少而产生的生化波动,但这些模拟的开关在很长一段时间内都是有效的。AMPAR开关源于一种新的自我招募过程,即足够数量的受体的存在会使受体移动循环偏向于将更多受体插入突触。CaMKII开关源于激酶的自磷酸化。这些开关可能以紧密耦合的方式起作用,或者相对独立地起作用。后一种情况会导致突触的多种稳定状态。我们提出,类似的自我招募循环对于维持许多经历调节性移动的分子的水平可能很重要,并且这些可能会导致像突触这样的系统出现组合式的可能稳定状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ff1/1185646/63de7737b428/pcbi.0010020.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验