Suppr超能文献

大鼠酪氨酸羟化酶的稳态动力学机制

Steady-state kinetic mechanism of rat tyrosine hydroxylase.

作者信息

Fitzpatrick P F

机构信息

Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843.

出版信息

Biochemistry. 1991 Apr 16;30(15):3658-62. doi: 10.1021/bi00229a010.

Abstract

The steady-state kinetic mechanism for rat tyrosine hydroxylase has been determined by using recombinant enzyme expressed in insect tissue culture cells. Variation of any two of the three substrates, tyrosine, 6-methyltetrahydropterin, and oxygen, together at nonsaturating concentrations of the third gives a pattern of intersecting lines in a double-reciprocal plot. Varying tyrosine and oxygen together results in a rapid equilibrium pattern, while the other substrate pairs both fit a sequential mechanism. When tyrosine and 6-methyltetrahydropterin are varied at a fixed ratio at different oxygen concentrations, the intercept replot is linear and the slope replot is nonlinear with a zero intercept, consistent with rapid equilibrium binding of oxygen. All the replots when oxygen is varied in a fixed ratio with either tyrosine or 6-methyltetrahydropterin are nonlinear with finite intercepts. 6-Methyl-7,8-dihydropterin and norepinephrine are competitive inhibitors versus 6-methyltetrahydropterin and noncompetitive inhibitors versus tyrosine. 3-Iodotyrosine, a competitive inhibitor versus tyrosine, shows uncompetitive inhibition versus 6-methyltetrahydropterin. At high concentrations, tyrosine is a competitive inhibitor versus 6-methyltetrahydropterin. These results are consistent with an ordered kinetic mechanism with the order of binding being 6-methyltetrahydropterin, oxygen, and tyrosine and with formation of a dead-end enzyme-tyrosine complex. There is no significant primary kinetic isotope effect on the V/K values or on the Vmax value with [3,5-2H2]tyrosine as substrate. No burst of dihydroxyphenylalanine production is seen during the first turnover. These results rule out product release and carbon-hydrogen bond cleavage as rate-limiting steps.

摘要

通过使用在昆虫组织培养细胞中表达的重组酶,确定了大鼠酪氨酸羟化酶的稳态动力学机制。在三种底物(酪氨酸、6-甲基四氢生物蝶呤和氧气)中,任意两种在第三种底物非饱和浓度下共同变化,在双倒数图中会呈现相交线的模式。酪氨酸和氧气共同变化时呈现快速平衡模式,而其他底物对均符合有序机制。当酪氨酸和6-甲基四氢生物蝶呤以固定比例在不同氧气浓度下变化时,截距重绘图呈线性,斜率重绘图呈非线性且截距为零,这与氧气的快速平衡结合一致。当氧气与酪氨酸或6-甲基四氢生物蝶呤以固定比例变化时,所有重绘图均为非线性且截距有限。6-甲基-7,8-二氢生物蝶呤和去甲肾上腺素对6-甲基四氢生物蝶呤是竞争性抑制剂,对酪氨酸是非竞争性抑制剂。3-碘酪氨酸对酪氨酸是竞争性抑制剂,对6-甲基四氢生物蝶呤表现为非竞争性抑制。在高浓度时,酪氨酸对6-甲基四氢生物蝶呤是竞争性抑制剂。这些结果与一种有序动力学机制一致,结合顺序为6-甲基四氢生物蝶呤、氧气和酪氨酸,并形成了一种终产物酶-酪氨酸复合物。以[3,5-2H2]酪氨酸为底物时,对V/K值或Vmax值没有显著的一级动力学同位素效应。在第一次周转期间未观察到二羟基苯丙氨酸的快速生成。这些结果排除了产物释放和碳氢键断裂作为限速步骤的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验