Suppr超能文献

Mitochondrial DNA sequence polymorphism, VO2max, and response to endurance training.

作者信息

Dionne F T, Turcotte L, Thibault M C, Boulay M R, Skinner J S, Bouchard C

机构信息

Physical Activity Sciences Laboratory, Laval University, Ste-Foy, Québec, Canada.

出版信息

Med Sci Sports Exerc. 1991 Feb;23(2):177-85.

PMID:1673216
Abstract

Mitochondrial DNA sequence variation was determined in 46 sedentary young adult males who took part in ergocycle endurance training programs in two laboratories to assess whether mitochondrial DNA variants were associated with individual differences in maximal oxygen uptake (VO2max) and its response to training. VO2max was obtained from a progressive ergocycle test to exhaustion. White blood cell mitochondrial DNA was characterized with the restriction fragment length polymorphism (RFLP) technique using 22 restriction enzymes and human mitochondrial DNA as a probe for hybridization. Multiple mitochondrial DNA variants were detected with 15 of the enzymes. Some subjects exhibited many RFLPs, while others showed no variation. These RFLPs (morphs) were generated by base substitutions located in gene regions coding for mitochondrial proteins as well as in the noncoding regions. Carriers of three mitochondrial DNA morphs, two in the subunit 5 of the NADH dehydrogenase gene and one in the tRNA for threonine, had a VO2max (ml.kg-1.min-1) in the untrained state significantly higher than noncarriers, while carriers of one mitochondrial DNA morph in subunit 2 of NADH dehydrogenase had a lower initial VO2max. Endurance training increased VO2max by a mean of 0.51 of O2, with individual differences ranging from gains of 0.06 to 1.03. After adjustment for training site and initial VO2max, a lower response was observed for three carriers of a variant in subunit 5 of the NADH dehydrogenase detected with HincII (mean gain of 0.28 I; P less than 0.05). These results suggest that sequence variation in mitochondrial DNA may contribute to individual difference in VO2max and its response to training.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验