Dewa Takehisa, Sugiura Ryuta, Suemori Yoshiharu, Sugimoto Miku, Takeuchi Toshikazu, Hiro Akito, Iida Kouji, Gardiner Alastair T, Cogdell Richard J, Nango Mamoru
Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
Langmuir. 2006 Jun 6;22(12):5412-8. doi: 10.1021/la060275d.
A unique method is described for directly observing the lateral organization of a membrane protein (bacterial light-harvesting complex LH2) in a supported lipid bilayer using total internal reflection fluorescence (TIRF) microscopy. The supported lipid bilayer consisted of anionic 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1'-glycerol)] (DOPG) and 1,2-distearoly-sn-3-[phospho-rac-(1'-glycerol)] (DSPG) and was formed through the rupture of a giant vesicle on a positively charged coverslip. TIRF microscopy revealed that the bilayer was composed of phase-separated domains. When a suspension of cationic phospholipid (1,2-dioleoyl-sn-glycero-3-ethylphosphocholine: EDOPC) vesicles (approximately 400 nm in diameter), containing LH2 complexes (EDOPC/LH2 = 1000/1), was put into contact with the supported lipid bilayer, the cationic vesicles immediately began to fuse and did so specifically with the fluid phase (DOPG-rich domain) of the supported bilayer. Fluorescence from the incorporated LH2 complexes gradually (over approximately 20 min) spread from the domain boundary into the gel domain (DSPG-rich domain). Similar diffusion into the domain-structured supported lipid membrane was observed when the fluorescent lipid (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-lissamine-rhodamine B sulfonyl: N-Rh-DOPE) was incorporated into the vesicles instead of LH2. These results indicate that vesicles containing LH2 and lipids preferentially fuse with the fluid domain, after which they laterally diffuse into the gel domain. This report describes for first time the lateral organization of a membrane protein, LH2, via vesicle fusion and subsequent lateral diffusion of the LH2 from the fluid to the gel domains in the supported lipid bilayer. The biological implications and applications of the present study are briefly discussed.
本文描述了一种独特的方法,利用全内反射荧光(TIRF)显微镜直接观察支撑脂质双层中膜蛋白(细菌捕光复合物LH2)的侧向组织。支撑脂质双层由阴离子型1,2 - 二油酰 - sn - 甘油 - 3 - [磷酸 - rac - (1'-甘油)](DOPG)和1,2 - 二硬脂酰 - sn - 3 - [磷酸 - rac - (1'-甘油)](DSPG)组成,通过在带正电的盖玻片上的巨型囊泡破裂形成。TIRF显微镜显示双层由相分离结构域组成。当含有LH2复合物(EDOPC/LH2 = 1000/1)的阳离子磷脂(1,2 - 二油酰 - sn - 甘油 - 3 - 乙基磷酸胆碱:EDOPC)囊泡(直径约400 nm)悬浮液与支撑脂质双层接触时,阳离子囊泡立即开始融合,并特异性地与支撑双层的流体相(富含DOPG的结构域)融合。掺入的LH2复合物的荧光逐渐(约20分钟)从结构域边界扩散到凝胶结构域(富含DSPG的结构域)。当荧光脂质(1,2 - 二油酰 - sn - 甘油 - 3 - 磷酸乙醇胺 - N - 丽丝胺罗丹明B磺酰:N - Rh - DOPE)而不是LH2掺入囊泡时,观察到类似的向结构域化支撑脂质膜中的扩散。这些结果表明,含有LH2和脂质的囊泡优先与流体结构域融合,然后侧向扩散到凝胶结构域。本报告首次描述了通过囊泡融合以及随后LH2在支撑脂质双层中从流体结构域向凝胶结构域的侧向扩散实现的膜蛋白LH2的侧向组织。简要讨论了本研究的生物学意义和应用。