Gal Ram, Libersat Frederic
Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva, 84105, Israel.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Sep;192(9):1003-20. doi: 10.1007/s00359-006-0135-4. Epub 2006 May 30.
In insects, thoracic pattern generators are modulated by the two head ganglia, the supraesophageal ganglion (brain) and the subesophageal ganglion, which act as higher-order neuronal centers. To explore the contribution of each head ganglion to the initiation and maintenance of specific motor behaviors in cockroaches (Periplaneta americana), we performed specific lesions to remove descending inputs from either the brain or the subesophageal ganglion or both, and quantified the behavioral outcome with a battery of motor tasks. We show that 'emergency' behaviors, such as escape, flight, swimming or righting, are initiated at the thoracic level independently of descending inputs from the head ganglia. Yet, the head ganglia play a major role in maintaining these reflexively initiated behaviors. By separately removing each of the two head ganglia, we show that the brain excites flight behavior and inhibits walking-related behaviors, whereas the subesophageal ganglion exerts the opposite effects. Thus, control over specific motor behaviors in cockroaches is anatomically and functionally compartmentalized. We propose a comprehensive model in which the relative permissive versus inhibitory inputs descending from the two head ganglia, combined with thoracic afferent sensory inputs, select a specific thoracic motor pattern while preventing the others.
在昆虫中,胸部模式发生器受两个头部神经节调节,即食管上神经节(脑)和食管下神经节,它们作为高阶神经中枢。为了探究每个头部神经节对蟑螂(美洲大蠊)特定运动行为的启动和维持所起的作用,我们进行了特定损伤,以去除来自脑或食管下神经节或两者的下行输入,并通过一系列运动任务对行为结果进行量化。我们发现,诸如逃跑、飞行、游泳或翻身等“紧急”行为在胸部水平启动,独立于来自头部神经节的下行输入。然而,头部神经节在维持这些反射性启动的行为中起主要作用。通过分别切除两个头部神经节中的每一个,我们发现脑激发飞行行为并抑制与行走相关的行为,而食管下神经节则产生相反的作用。因此,蟑螂对特定运动行为的控制在解剖学和功能上是分区的。我们提出了一个综合模型,其中来自两个头部神经节的相对许可性与抑制性输入,与胸部传入感觉输入相结合,选择特定的胸部运动模式,同时防止其他模式的出现。