Carlson Christin N, Kuehl Christopher J, Da Re Ryan E, Veauthier Jacqueline M, Schelter Eric J, Milligan Ashley E, Scott Brian L, Bauer Eric D, Thompson J D, Morris David E, John Kevin D
Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
J Am Chem Soc. 2006 Jun 7;128(22):7230-41. doi: 10.1021/ja058667e.
A systematic study of the novel charge-transfer [(f)14-(pi)0-(f)14 --> (f)13-(pi)2-(f)13] electronic state found in 2:1 metal-to-ligand adducts of the type (Cp)2Yb[Yb(Cp)2] [BL = tetra(2-pyridyl)pyrazine (tppz) (1), 6',6' '-bis(2-pyridyl)-2,2':4',4'':2'',2'''-quaterpyridine (qtp) (2), 1,4-di(terpyridyl)-benzene (dtb) (3), Cp = (C5Me5)] has been conducted with the aim of determining the effects of increased Yb-Yb separation on the magnetic and electronic properties of these materials. The neutral [(f)13-(pi)2-(f)13], cationic [(f)13-(pi)1-(f)13] and dicationic [(f)13-(pi)0-(f)13] states of these complexes were studied by cyclic voltammetry, UV-vis-NIR electronic absorption spectroscopy, NMR, X-ray crystallography, and magnetic susceptibility measurements. The spectroscopic and magnetic data for the neutral bimetallic complexes is consistent with an [(f)13(pi)2(f)13] ground-state electronic configuration in which each ytterbocene fragment donates one electron to give a singlet dianionic bridging ligand with two paramagnetic Yb(III) centers. The voltammetric data demonstrate that the electronic interaction in the neutral molecular wires 1-3, as manifested in the separation between successive metal reduction waves, is large compared to analogous transition metal systems. Electronic spectra for the neutral and monocationic bimetallic species are dominated by pi-pi and pi-pi transitions, masking the f-f bands that are expected to best reflect the electronic metal-metal interactions. However, these metal-localized transitions are observed when the electrons are removed from the bridging ligand via chemical oxidation to yield the dicationic species, and they suggest very little electronic interaction between metal centers in the absence of pi electrons on the bridging ligands. Analysis of the magnetic data reveals that the qtp complex displays antiferromagnetic coupling of the type Yb(alpha)(alphabeta)Yb(beta) at approximately 13 K.
对新型电荷转移[(f)14-(π)0-(f)14 → (f)13-(π)2-(f)13]电子态进行了系统研究,该电子态存在于(Cp)2Yb[Yb(Cp)2]类型的2:1金属-配体加合物中[BL = 四(2-吡啶基)吡嗪(tppz)(1)、6',6''-双(2-吡啶基)-2,2':4',4'':2'',2'''-四联吡啶(qtp)(2)、1,4-二(三联吡啶)-苯(dtb)(3),Cp = (C5Me5)],目的是确定镱-镱间距增加对这些材料的磁性和电子性质的影响。通过循环伏安法、紫外-可见-近红外电子吸收光谱、核磁共振、X射线晶体学和磁化率测量研究了这些配合物的中性[(f)13-(π)2-(f)13]、阳离子[(f)13-(π)1-(f)13]和双阳离子[(f)13-(π)0-(f)13]态。中性双金属配合物的光谱和磁性数据与[(f)13(π)2(f)13]基态电子构型一致,其中每个茂镱片段贡献一个电子,形成具有两个顺磁性Yb(III)中心的单重态双阴离子桥连配体。伏安数据表明,中性分子线1-3中的电子相互作用,如连续金属还原波之间的间距所示,与类似的过渡金属体系相比很大。中性和单阳离子双金属物种的电子光谱以π-π和π-π跃迁为主,掩盖了预期能最好反映金属-金属电子相互作用的f-f带。然而,当通过化学氧化从桥连配体中去除电子以产生双阳离子物种时,观察到了这些金属局域跃迁,这表明在桥连配体上没有π电子的情况下,金属中心之间的电子相互作用非常小。对磁性数据的分析表明,qtp配合物在约13 K时显示出Yb(α)(αβ)Yb(β)类型的反铁磁耦合。