Suppr超能文献

最大键合过渡金属和主族分子中反弯几何构型的起源。

Origin of trans-bent geometries in maximally bonded transition metal and main group molecules.

作者信息

Landis Clark R, Weinhold Frank

机构信息

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

出版信息

J Am Chem Soc. 2006 Jun 7;128(22):7335-45. doi: 10.1021/ja060992u.

Abstract

Recent crystallographic data unambiguously demonstrate that neither Ar'GeGeAr' nor Ar'CrCrAr' molecules adopt the expected linear (VSEPR-like) geometries. Does the adoption of trans-bent geometries indicate that Ar'MMAr' molecules are not "maximally bonded" (i.e., bond order of three for M = Ge and five for M = Cr)? We employ theoretical hybrid density functional (B3LYP/6-311++G) computations and natural bond orbital-based analysis to quantify molecular bond orders and to elucidate the electronic origin of such unintuitive structures. Resonance structures based on quintuple M-M bonding dominate for the transition metal compounds, especially for molybdenum and tungsten. For the main group, M-M bonding consists of three shared electron pairs, except for M = Pb. For both d- and p-block compounds, the M-M bond orders are reflected in torsional barriers, bond-antibond splittings, and heats of hydrogenation in a qualitatively intuitive way. Trans-bent structures arise primarily from hybridization tendencies that yield the strongest sigma-bonds. For transition metals, the strong tendency toward sd-hybridization in making covalent bonds naturally results in bent ligand arrangements about the metal. In the p-block, hybridization tendencies favor high p-character, with increasing avidity as one moves down the Group 14 column, and nonlinear structures result. In both the p-block and the d-block, bonding schemes have easily identifiable Lewis-like character but adopt somewhat unconventional orbital interactions. For more common metal-metal multiply bonded compounds such as [Re2Cl8]2-, the core Lewis-like fragment [Re2Cl4]2+ is modified by four hypervalent three-center/four-electron additions.

摘要

最近的晶体学数据明确表明,Ar'GeGeAr'和Ar'CrCrAr'分子均未采用预期的线性(类似VSEPR)几何结构。采用反弯几何结构是否表明Ar'MMAr'分子并非“最大程度键合”(即对于M = Ge,键级为3;对于M = Cr,键级为5)?我们采用理论杂化密度泛函(B3LYP/6 - 311++G)计算以及基于自然键轨道的分析来量化分子键级,并阐明这种非直观结构的电子起源。基于五元M - M键合的共振结构在过渡金属化合物中占主导,特别是对于钼和钨。对于主族元素,除了M = Pb外,M - M键合由三对共享电子对组成。对于d族和p族化合物,M - M键级以定性直观的方式反映在扭转势垒、键 - 反键分裂和氢化热中。反弯结构主要源于产生最强σ键的杂化倾向。对于过渡金属,在形成共价键时强烈的sd杂化倾向自然导致围绕金属的弯曲配体排列。在p族元素中,杂化倾向有利于高p特征,随着沿第14族向下移动,亲和力增加,从而产生非线性结构。在p族和d族中,键合方案具有易于识别的类似路易斯结构的特征,但采用了一些非常规的轨道相互作用。对于更常见的金属 - 金属多重键合化合物,如[Re₂Cl₈]²⁻,核心类似路易斯结构的片段[Re₂Cl₄]²⁺通过四个超价三中心/四电子加成进行修饰。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验