Suppr超能文献

交通伤严重程度分析:非参数分类树技术的应用

Analysis of traffic injury severity: an application of non-parametric classification tree techniques.

作者信息

Chang Li-Yen, Wang Hsiu-Wen

机构信息

Graduate Institute of Transportation and Logistics, National Chia-Yi University, 300 University Road, Chia-Yi 60004, Taiwan.

出版信息

Accid Anal Prev. 2006 Sep;38(5):1019-27. doi: 10.1016/j.aap.2006.04.009. Epub 2006 Jun 2.

Abstract

Statistical regression models, such as logit or ordered probit/logit models, have been widely employed to analyze injury severity of traffic accidents. However, most regression models have their own model assumptions and pre-defined underlying relationships between dependent and independent variables. If these assumptions are violated, the model could lead to erroneous estimations of injury likelihood. The classification and regression tree (CART), one of the most widely applied data mining techniques, has been commonly employed in business administration, industry, and engineering. CART does not require any pre-defined underlying relationship between target (dependent) variable and predictors (independent variables) and has been shown to be a powerful tool, particularly for dealing with prediction and classification problems. This study uses the 2001 accident data for Taipei, Taiwan. A CART model was developed to establish the relationship between injury severity and driver/vehicle characteristics, highway/environmental variables and accident variables. The results indicate that the most important variable associated with crash severity is the vehicle type. Pedestrians, motorcycle and bicycle riders are identified to have higher risks of being injured than other types of vehicle drivers in traffic accidents.

摘要

统计回归模型,如逻辑回归或有序概率单位/逻辑回归模型,已被广泛用于分析交通事故的伤害严重程度。然而,大多数回归模型都有其自身的模型假设以及因变量和自变量之间预先定义的潜在关系。如果这些假设被违反,模型可能会导致对伤害可能性的错误估计。分类与回归树(CART)是应用最广泛的数据挖掘技术之一,已在工商管理、工业和工程领域中普遍使用。CART不需要目标(因)变量和预测变量(自变量)之间有任何预先定义的潜在关系,并且已被证明是一个强大的工具,特别是在处理预测和分类问题方面。本研究使用了台湾台北市2001年的事故数据。开发了一个CART模型来建立伤害严重程度与驾驶员/车辆特征、公路/环境变量和事故变量之间的关系。结果表明,与碰撞严重程度相关的最重要变量是车辆类型。在交通事故中,行人、摩托车和自行车骑行者被确定比其他类型的车辆驾驶员受伤风险更高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验