Bakht Omar, London Erwin
Department of Biochemistry and Cell Biology, Stony Brook University, State University of New York, Stony Brook, New York 11794-5215.
Department of Biochemistry and Cell Biology, Stony Brook University, State University of New York, Stony Brook, New York 11794-5215.
J Biol Chem. 2006 Aug 4;281(31):21903-21913. doi: 10.1074/jbc.M600395200. Epub 2006 May 30.
Genetic disorders of cholesterol biosynthesis result in accumulation of cholesterol precursors and cause severe disease. We examined whether cholesterol precursors alter the stability and properties of ordered lipid domains (rafts). Tempo quenching of a raft-binding fluorophore was used to measure raft stability in vesicles containing sterol, dioleoylphosphatidylcholine, and one of the following ordered domain-forming lipids/lipid mixtures: dipalmitoylphosphatidylcholine (DPPC), sphingomyelin (SM), a SM/cerebroside mixture or a SM/ceramide (cer) mixture. Relative to cholesterol, early cholesterol precursors containing an 8-9 double bond (lanosterol, dihydrolanosterol, zymosterol, and zymostenol) only weakly stabilized raft formation by SM or DPPC. Desmosterol, a late precursor containing the same 5-6 double bond as cholesterol, but with an additional 24-25 double bond, also stabilized domain formation weakly. In contrast, two late precursors containing 7-8 double bonds (lathosterol and 7-dehydrocholesterol) were better raft stabilizers than cholesterol. For vesicles containing SM/cerebroside and SM/cer mixtures the effect of precursor upon raft stability was small, although the relative effects of different precursors were the same. Using both detergent resistance and a novel assay involving fluorescence quenching induced by certain sterols we found cholesterol precursors were displaced from cer-rich rafts, and could displace cer from rafts. Precursor displacement by cer was inversely correlated to precursor raft-stabilizing abilities, whereas precursor displacement of cer was greatest for the most highly raft-stabilizing precursors. These observations support the hypothesis that sterols and cer compete for raft-association (Megha, and London, E. (2004) J. Biol. Chem. 279, 9997-10004). The results of this study have important implications for how precursors might alter raft structure and function in cells, and for the Bloch hypothesis, which postulates that sterol properties are gradually optimized for function along the biosynthetic pathway.
胆固醇生物合成的遗传紊乱会导致胆固醇前体的积累,并引发严重疾病。我们研究了胆固醇前体是否会改变有序脂质结构域(脂筏)的稳定性和特性。使用与脂筏结合的荧光团的时间猝灭来测量含有甾醇、二油酰磷脂酰胆碱以及以下有序结构域形成脂质/脂质混合物之一的囊泡中的脂筏稳定性:二棕榈酰磷脂酰胆碱(DPPC)、鞘磷脂(SM)、SM/脑苷脂混合物或SM/神经酰胺(cer)混合物。相对于胆固醇,含有8-9双键的早期胆固醇前体(羊毛甾醇、二氢羊毛甾醇、酵母甾醇和酵母烯醇)仅通过SM或DPPC微弱地稳定脂筏形成。去氢胆甾醇是一种晚期前体,含有与胆固醇相同的5-6双键,但还有一个额外的24-25双键,它也微弱地稳定结构域形成。相比之下,含有7-8双键的两种晚期前体(羊毛甾醇和7-脱氢胆固醇)比胆固醇是更好的脂筏稳定剂。对于含有SM/脑苷脂和SM/cer混合物的囊泡,前体对脂筏稳定性的影响较小,尽管不同前体的相对影响是相同的。使用去污剂抗性和一种涉及某些甾醇诱导的荧光猝灭的新检测方法,我们发现胆固醇前体从富含cer的脂筏中被取代,并且可以从脂筏中取代cer。cer对前体的取代与前体的脂筏稳定能力呈负相关,而cer的前体取代对于最稳定脂筏的前体最大。这些观察结果支持了甾醇和cer竞争脂筏结合的假设(Megha和London,E.(2004)J. Biol. Chem. 279,9997-10004)。这项研究的结果对于前体如何改变细胞中的脂筏结构和功能,以及对于布洛赫假设具有重要意义,该假设假定甾醇特性沿着生物合成途径逐渐针对功能进行优化。