Suppr超能文献

将层次多元曲线分辨应用于气相色谱-质谱数据的预测性代谢物谱分析——一种多参数诊断的潜在工具。

Predictive metabolite profiling applying hierarchical multivariate curve resolution to GC-MS data--a potential tool for multi-parametric diagnosis.

作者信息

Jonsson Pär, Johansson Elin Sjövik, Wuolikainen Anna, Lindberg Johan, Schuppe-Koistinen Ina, Kusano Miyako, Sjöström Michael, Trygg Johan, Moritz Thomas, Antti Henrik

机构信息

Research Group for Chemometrics, Organic Chemistry, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.

出版信息

J Proteome Res. 2006 Jun;5(6):1407-14. doi: 10.1021/pr0600071.

Abstract

A method for predictive metabolite profiling based on resolution of GC-MS data followed by multivariate data analysis is presented and applied to three different biofluid data sets (rat urine, aspen leaf extracts, and human blood plasma). Hierarchical multivariate curve resolution (H-MCR) was used to simultaneously resolve the GC-MS data into pure profiles, describing the relative metabolite concentrations between samples, for multivariate analysis. Here, we present an extension of the H-MCR method allowing treatment of independent samples according to processing parameters estimated from a set of training samples. Predictions or inclusion of the new samples, based on their metabolite profiles, into an existing model could then be carried out, which is a requirement for a working application within, e.g., clinical diagnosis. Apart from allowing treatment and prediction of independent samples the proposed method also reduces the time for the curve resolution process since only a subset of representative samples have to be processed while the remaining samples can be treated according to the obtained processing parameters. The time required for resolving the 30 training samples in the rat urine example was approximately 13 h, while the treatment of the 30 test samples according to the training parameters required only approximately 30 s per sample (approximately 15 min in total). In addition, the presented results show that the suggested approach works for describing metabolic changes in different biofluids, indicating that this is a general approach for high-throughput predictive metabolite profiling, which could have important applications in areas such as plant functional genomics, drug toxicity, treatment efficacy and early disease diagnosis.

摘要

本文提出了一种基于气相色谱-质谱(GC-MS)数据解析并结合多变量数据分析的预测性代谢物谱分析方法,并将其应用于三个不同的生物流体数据集(大鼠尿液、白杨叶提取物和人类血浆)。采用层次多变量曲线分辨(H-MCR)方法将GC-MS数据同时解析为纯谱图,描述样品间相对代谢物浓度,以进行多变量分析。在此,我们对H-MCR方法进行了扩展,允许根据从一组训练样品估计的处理参数来处理独立样品。然后可以基于新样品的代谢物谱将其预测或纳入现有模型,这是例如临床诊断中实际应用的一项要求。除了允许处理和预测独立样品外,所提出的方法还减少了曲线分辨过程的时间,因为只需处理一部分代表性样品,而其余样品可根据获得的处理参数进行处理。在大鼠尿液示例中,解析30个训练样品所需的时间约为13小时,而根据训练参数处理30个测试样品,每个样品仅需约30秒(总共约15分钟)。此外,所呈现的结果表明,所建议的方法适用于描述不同生物流体中的代谢变化,这表明这是一种用于高通量预测性代谢物谱分析的通用方法,在植物功能基因组学、药物毒性、治疗效果和早期疾病诊断等领域可能具有重要应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验