Rosen Abbey E, Brooks Bonnie S, Guth Ethan, Francklyn Christopher S, Musier-Forsyth Karin
Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
RNA. 2006 Jul;12(7):1315-22. doi: 10.1261/rna.78606. Epub 2006 Jun 1.
All histidine tRNA molecules have an extra nucleotide, G-1, at the 5' end of the acceptor stem. In bacteria, archaea, and eukaryotic organelles, G-1 base pairs with C73, while in eukaryotic cytoplasmic tRNAHis, G-1 is opposite A73. Previous studies of Escherichia coli histidyl-tRNA synthetase (HisRS) have demonstrated the importance of the G-1:C73 base pair to tRNAHis identity. Specifically, the 5'-monophosphate of G-1 and the major groove amine of C73 are recognized by E. coli HisRS; these individual atomic groups each contribute approximately 4 kcal/mol to transition state stabilization. In this study, two chemically synthesized 24-nucleotide RNA microhelices, each of which recapitulates the acceptor stem of either E. coli or Saccharomyces cervisiae tRNAHis, were used to facilitate an atomic group "mutagenesis" study of the -1:73 base pair recognition by S. cerevisiae HisRS. Compared with E. coli HisRS, microhelixHis is a much poorer substrate relative to full-length tRNAHis for the yeast enzyme. However, the data presented here suggest that, similar to the E. coli system, the 5' monophosphate of yeast tRNA(His) is critical for aminoacylation by yeast HisRS and contributes approximately 3 kcal/mol to transition state stability. The primary role of the unique -1:73 base pair of yeast tRNAHis appears to be to properly position the critical 5' monophosphate for interaction with the yeast enzyme. Our data also suggest that the eukaryotic HisRS/tRNAHis interaction has coevolved to rely less on specific major groove interactions with base atomic groups than the bacterial system.
所有组氨酸tRNA分子在受体茎的5'端都有一个额外的核苷酸G-1。在细菌、古菌和真核细胞器中,G-1与C73形成碱基对,而在真核细胞质tRNAHis中,G-1与A73相对。先前对大肠杆菌组氨酰-tRNA合成酶(HisRS)的研究已经证明了G-1:C73碱基对对于tRNAHis身份识别的重要性。具体而言,G-1的5'-单磷酸和C73的大沟胺被大肠杆菌HisRS识别;这些单个原子基团各自对过渡态稳定化贡献约4千卡/摩尔。在本研究中,使用了两个化学合成的24个核苷酸的RNA微螺旋,每个微螺旋都模拟了大肠杆菌或酿酒酵母tRNAHis的受体茎,以促进对酿酒酵母HisRS对-1:73碱基对识别的原子基团“诱变”研究。与大肠杆菌HisRS相比,对于酵母酶而言微螺旋His相对于全长tRNAHis是一个差得多的底物。然而,此处给出的数据表明,与大肠杆菌系统类似,酵母tRNA(His)的5'单磷酸对于酵母HisRS的氨酰化至关重要,并且对过渡态稳定性贡献约3千卡/摩尔。酵母tRNAHis独特的-1:73碱基对的主要作用似乎是正确定位关键的5'单磷酸以与酵母酶相互作用。我们的数据还表明,与细菌系统相比,真核HisRS/tRNAHis相互作用在进化过程中对与碱基原子基团的特定大沟相互作用的依赖程度降低。