Suppr超能文献

对组氨酸tRNA氨基酰化至关重要的功能性重要主链磷酸基团的进化保守性。

Evolutionary conservation of a functionally important backbone phosphate group critical for aminoacylation of histidine tRNAs.

作者信息

Rosen Abbey E, Brooks Bonnie S, Guth Ethan, Francklyn Christopher S, Musier-Forsyth Karin

机构信息

Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

RNA. 2006 Jul;12(7):1315-22. doi: 10.1261/rna.78606. Epub 2006 Jun 1.

Abstract

All histidine tRNA molecules have an extra nucleotide, G-1, at the 5' end of the acceptor stem. In bacteria, archaea, and eukaryotic organelles, G-1 base pairs with C73, while in eukaryotic cytoplasmic tRNAHis, G-1 is opposite A73. Previous studies of Escherichia coli histidyl-tRNA synthetase (HisRS) have demonstrated the importance of the G-1:C73 base pair to tRNAHis identity. Specifically, the 5'-monophosphate of G-1 and the major groove amine of C73 are recognized by E. coli HisRS; these individual atomic groups each contribute approximately 4 kcal/mol to transition state stabilization. In this study, two chemically synthesized 24-nucleotide RNA microhelices, each of which recapitulates the acceptor stem of either E. coli or Saccharomyces cervisiae tRNAHis, were used to facilitate an atomic group "mutagenesis" study of the -1:73 base pair recognition by S. cerevisiae HisRS. Compared with E. coli HisRS, microhelixHis is a much poorer substrate relative to full-length tRNAHis for the yeast enzyme. However, the data presented here suggest that, similar to the E. coli system, the 5' monophosphate of yeast tRNA(His) is critical for aminoacylation by yeast HisRS and contributes approximately 3 kcal/mol to transition state stability. The primary role of the unique -1:73 base pair of yeast tRNAHis appears to be to properly position the critical 5' monophosphate for interaction with the yeast enzyme. Our data also suggest that the eukaryotic HisRS/tRNAHis interaction has coevolved to rely less on specific major groove interactions with base atomic groups than the bacterial system.

摘要

所有组氨酸tRNA分子在受体茎的5'端都有一个额外的核苷酸G-1。在细菌、古菌和真核细胞器中,G-1与C73形成碱基对,而在真核细胞质tRNAHis中,G-1与A73相对。先前对大肠杆菌组氨酰-tRNA合成酶(HisRS)的研究已经证明了G-1:C73碱基对对于tRNAHis身份识别的重要性。具体而言,G-1的5'-单磷酸和C73的大沟胺被大肠杆菌HisRS识别;这些单个原子基团各自对过渡态稳定化贡献约4千卡/摩尔。在本研究中,使用了两个化学合成的24个核苷酸的RNA微螺旋,每个微螺旋都模拟了大肠杆菌或酿酒酵母tRNAHis的受体茎,以促进对酿酒酵母HisRS对-1:73碱基对识别的原子基团“诱变”研究。与大肠杆菌HisRS相比,对于酵母酶而言微螺旋His相对于全长tRNAHis是一个差得多的底物。然而,此处给出的数据表明,与大肠杆菌系统类似,酵母tRNA(His)的5'单磷酸对于酵母HisRS的氨酰化至关重要,并且对过渡态稳定性贡献约3千卡/摩尔。酵母tRNAHis独特的-1:73碱基对的主要作用似乎是正确定位关键的5'单磷酸以与酵母酶相互作用。我们的数据还表明,与细菌系统相比,真核HisRS/tRNAHis相互作用在进化过程中对与碱基原子基团的特定大沟相互作用的依赖程度降低。

相似文献

2
Recognition of G-1:C73 atomic groups by Escherichia coli histidyl-tRNA synthetase.
J Am Chem Soc. 2004 Jan 14;126(1):64-5. doi: 10.1021/ja0381609.
5
Change of tRNA identity leads to a divergent orthogonal histidyl-tRNA synthetase/tRNAHis pair.
Nucleic Acids Res. 2011 Mar;39(6):2286-93. doi: 10.1093/nar/gkq1176. Epub 2010 Nov 17.
6
Role of the extra G-C pair at the end of the acceptor stem of tRNA(His) in aminoacylation.
Nucleic Acids Res. 1989 Oct 11;17(19):7855-63. doi: 10.1093/nar/17.19.7855.
7
Human BCDIN3D monomethylates cytoplasmic histidine transfer RNA.
Nucleic Acids Res. 2017 May 19;45(9):5423-5436. doi: 10.1093/nar/gkx051.
9
Identity elements of Saccharomyces cerevisiae tRNA(His).
Nucleic Acids Res. 1995 Feb 11;23(3):389-94. doi: 10.1093/nar/23.3.389.

引用本文的文献

1
Metal Ion Requirement for Catalysis by 3'-5' RNA Polymerases.
Biochemistry. 2025 Aug 19;64(16):3559-3569. doi: 10.1021/acs.biochem.5c00162. Epub 2025 Aug 7.
2
Metal ion requirement for catalysis by 3'-5' RNA polymerases.
bioRxiv. 2025 Mar 21:2025.03.21.644660. doi: 10.1101/2025.03.21.644660.
3
Transfer RNA supplementation rescues HARS deficiency in a humanized yeast model of Charcot-Marie-Tooth disease.
Nucleic Acids Res. 2024 Dec 11;52(22):14043-14060. doi: 10.1093/nar/gkae996.
6
Fidelity of base-pair recognition by a 3'-5' polymerase: mechanism of the tRNA guanylyltransferase.
RNA. 2021 Jun;27(6):683-693. doi: 10.1261/rna.078686.121. Epub 2021 Mar 31.
7
A Temporal Order in 5'- and 3'- Processing of Eukaryotic tRNA.
Int J Mol Sci. 2019 Mar 19;20(6):1384. doi: 10.3390/ijms20061384.
9
5'-Terminal nucleotide variations in human cytoplasmic tRNAHisGUG and its 5'-halves.
RNA. 2017 Feb;23(2):161-168. doi: 10.1261/rna.058024.116. Epub 2016 Nov 22.
10
RNA damage in biological conflicts and the diversity of responding RNA repair systems.
Nucleic Acids Res. 2016 Oct 14;44(18):8525-8555. doi: 10.1093/nar/gkw722. Epub 2016 Aug 17.

本文引用的文献

1
TFAM detects co-evolution of tRNA identity rules with lateral transfer of histidyl-tRNA synthetase.
Nucleic Acids Res. 2006 Feb 9;34(3):893-904. doi: 10.1093/nar/gkj449. Print 2006.
2
The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer-editing conformation.
Nat Struct Mol Biol. 2005 Oct;12(10):923-30. doi: 10.1038/nsmb986. Epub 2005 Sep 11.
5
Compilation of tRNA sequences and sequences of tRNA genes.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D139-40. doi: 10.1093/nar/gki012.
7
Recognition of G-1:C73 atomic groups by Escherichia coli histidyl-tRNA synthetase.
J Am Chem Soc. 2004 Jan 14;126(1):64-5. doi: 10.1021/ja0381609.
8
tRNAHis maturation: an essential yeast protein catalyzes addition of a guanine nucleotide to the 5' end of tRNAHis.
Genes Dev. 2003 Dec 1;17(23):2889-901. doi: 10.1101/gad.1148603. Epub 2003 Nov 21.
9
The structure of an AspRS-tRNA(Asp) complex reveals a tRNA-dependent control mechanism.
EMBO J. 2001 Sep 17;20(18):5290-301. doi: 10.1093/emboj/20.18.5290.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验