Lee S H, Van der Werf J H J
School of Rural Science and Agriculture and The Institute of Genetics and Bioinformatics, University of New England, Armidale, NSW 2351, Australia.
Genetics. 2006 Aug;173(4):2329-37. doi: 10.1534/genetics.106.057653. Epub 2006 Jun 4.
Within a small region (e.g., <10 cM), there can be multiple quantitative trait loci (QTL) underlying phenotypes of a trait. Simultaneous fine mapping of closely linked QTL needs an efficient tool to remove confounded shade effects among QTL within such a small region. We propose a variance component method using combined linkage disequilibrium (LD) and linkage information and a reversible jump Markov chain Monte Carlo (MCMC) sampling for model selection. QTL identity-by-descent (IBD) coefficients between individuals are estimated by a hybrid MCMC combining the random walk and the meiosis Gibbs sampler. These coefficients are used in a mixed linear model and an empirical Bayesian procedure combines residual maximum likelihood (REML) to estimate QTL effects and a reversible jump MCMC that samples the number of QTL and the posterior QTL intensities across the tested region. Note that two MCMC processes are used, i.e., an (internal) MCMC for IBD estimation and an (external) MCMC for model selection. In a simulation study, the use of the multiple-QTL model clearly removes the shade effects between three closely linked QTL located at 1.125, 3.875, and 7.875 cM across the region of 10 cM, using 40 markers at 0.25-cM intervals. It is shown that the use of combined LD and linkage information gives much more useful information compared to using linkage information alone for both single- and multiple-QTL analyses. When using a lower marker density (11 markers at 1-cM intervals), the signal of the second QTL can disappear. Extreme values of past effective size (resulting in extreme levels of LD) decrease the mapping accuracy.
在一个小区域内(例如,<10厘摩),某一性状的表型可能由多个数量性状基因座(QTL)决定。紧密连锁QTL的同时精细定位需要一个有效的工具来消除如此小区域内QTL之间的混杂阴影效应。我们提出一种使用组合连锁不平衡(LD)和连锁信息的方差分量方法以及用于模型选择的可逆跳跃马尔可夫链蒙特卡罗(MCMC)抽样。个体间的QTL同源性(IBD)系数通过结合随机游走和减数分裂吉布斯采样器的混合MCMC进行估计。这些系数用于混合线性模型,经验贝叶斯程序结合残差最大似然法(REML)来估计QTL效应,以及对测试区域内QTL数量和后验QTL强度进行抽样的可逆跳跃MCMC。请注意,使用了两个MCMC过程,即用于IBD估计的(内部)MCMC和用于模型选择的(外部)MCMC。在一项模拟研究中,使用多QTL模型清楚地消除了位于10厘摩区域内1.125、3.875和7.875厘摩处的三个紧密连锁QTL之间的阴影效应,使用了间隔为0.25厘摩的40个标记。结果表明,与单独使用连锁信息进行单QTL和多QTL分析相比,使用组合LD和连锁信息能提供更多有用信息。当使用较低的标记密度(间隔为1厘摩的11个标记)时,第二个QTL的信号可能消失。过去有效大小的极端值(导致LD的极端水平)会降低定位准确性。