Lee S H, Van der Werf J H J, Tier B
School of Rural Science and Agriculture and Institute of Genetics and Bioinformatics, University of New England, Armidale, New South Wales 2351, Australia.
Genetics. 2005 Dec;171(4):2063-72. doi: 10.1534/genetics.104.037028. Epub 2005 Jun 18.
A linkage analysis for finding inheritance states and haplotype configurations is an essential process for linkage and association mapping. The linkage analysis is routinely based upon observed pedigree information and marker genotypes for individuals in the pedigree. It is not feasible for exact methods to use all such information for a large complex pedigree especially when there are many missing genotypic data. Proposed Markov chain Monte Carlo approaches such as a single-site Gibbs sampler or the meiosis Gibbs sampler are able to handle a complex pedigree with sparse genotypic data; however, they often have reducibility problems, causing biased estimates. We present a combined method, applying the random walk approach to the reducible sites in the meiosis sampler. Therefore, one can efficiently obtain reliable estimates such as identity-by-descent coefficients between individuals based on inheritance states or haplotype configurations, and a wider range of data can be used for mapping of quantitative trait loci within a reasonable time.
用于确定遗传状态和单倍型构型的连锁分析是连锁和关联作图的一个重要过程。连锁分析通常基于观察到的系谱信息和系谱中个体的标记基因型。对于大型复杂系谱,尤其是当存在许多缺失的基因型数据时,精确方法使用所有此类信息是不可行的。提出的马尔可夫链蒙特卡罗方法,如单位点吉布斯采样器或减数分裂吉布斯采样器,能够处理具有稀疏基因型数据的复杂系谱;然而,它们经常存在可约性问题,导致估计有偏差。我们提出一种组合方法,将随机游走方法应用于减数分裂采样器中的可约位点。因此,基于遗传状态或单倍型构型,人们可以有效地获得可靠的估计值,如个体间的同源系数,并且可以在合理的时间内使用更广泛的数据进行数量性状位点的定位。