Kitakado Toshihide, Kitada Shuichi, Kishino Hirohisa, Skaug Hans Julius
Faculty of Marine Science, Tokyo University of Marine Science and Technology, Japan.
Genetics. 2006 Aug;173(4):2073-82. doi: 10.1534/genetics.106.055350. Epub 2006 Jun 4.
The aim of this article is to develop an integrated-likelihood (IL) approach to estimate the genetic differentiation between populations. The conventional maximum-likelihood (ML) and pseudolikelihood (PL) methods that use sample counts of alleles may cause severe underestimations of FST, which means overestimations of theta=4Nm, when the number of sampling localities is small. To reduce such bias in the estimation of genetic differentiation, we propose an IL method in which the mean allele frequencies over populations are regarded as nuisance parameters and are eliminated by integration. To maximize the IL function, we have developed two algorithms, a Monte Carlo EM algorithm and a Laplace approximation. Our simulation studies show that the method proposed here outperforms the conventional ML and PL methods in terms of unbiasedness and precision. The IL method was applied to real data for Pacific herring and African elephants.
本文的目的是开发一种综合似然(IL)方法来估计种群之间的遗传分化。当采样地点数量较少时,使用等位基因样本计数的传统最大似然(ML)和伪似然(PL)方法可能会导致FST的严重低估,这意味着对θ = 4Nm的高估。为了减少遗传分化估计中的这种偏差,我们提出了一种IL方法,其中将种群的平均等位基因频率视为干扰参数,并通过积分将其消除。为了最大化IL函数,我们开发了两种算法,一种蒙特卡罗期望最大化(EM)算法和一种拉普拉斯近似。我们的模拟研究表明,本文提出的方法在无偏性和精度方面优于传统的ML和PL方法。IL方法被应用于太平洋鲱鱼和非洲象的实际数据。