Kitada S, Hayashi T, Kishino H
Department of Aquatic Biosciences, Tokyo University of Fisheries, Minato, Tokyo 108-8477, Japan.
Genetics. 2000 Dec;156(4):2063-79. doi: 10.1093/genetics/156.4.2063.
We developed an empirical Bayes procedure to estimate genetic distances between populations using allele frequencies. This procedure makes it possible to describe the skewness of the genetic distance while taking full account of the uncertainty of the sample allele frequencies. Dirichlet priors of the allele frequencies are specified, and the posterior distributions of the various composite parameters are obtained by Monte Carlo simulation. To avoid overdependence on subjective priors, we adopt a hierarchical model and estimate hyperparameters by maximizing the joint marginal-likelihood function. Taking advantage of the empirical Bayesian procedure, we extend the method to estimate the effective population size using temporal changes in allele frequencies. The method is applied to data sets on red sea bream, herring, northern pike, and ayu broodstock. It is shown that overdispersion overestimates the genetic distance and underestimates the effective population size, if it is not taken into account during the analysis. The joint marginal-likelihood function also estimates the rate of gene flow into island populations.
我们开发了一种经验贝叶斯方法,利用等位基因频率来估计种群之间的遗传距离。该方法能够在充分考虑样本等位基因频率不确定性的同时,描述遗传距离的偏度。指定了等位基因频率的狄利克雷先验分布,并通过蒙特卡罗模拟获得各种复合参数的后验分布。为避免过度依赖主观先验,我们采用层次模型,并通过最大化联合边际似然函数来估计超参数。利用经验贝叶斯方法,我们扩展了该方法,以利用等位基因频率的时间变化来估计有效种群大小。该方法应用于真鲷、鲱鱼、白斑狗鱼和香鱼亲鱼的数据集。结果表明,如果在分析过程中不考虑过度离散,那么过度离散会高估遗传距离并低估有效种群大小。联合边际似然函数还可以估计基因流入岛屿种群的速率。