Suppr超能文献

基于模型的四维正电子发射断层显像图像重建

Model-based image reconstruction for four-dimensional PET.

作者信息

Li Tianfang, Thorndyke Brian, Schreibmann Eduard, Yang Yong, Xing Lei

机构信息

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305-5847, USA.

出版信息

Med Phys. 2006 May;33(5):1288-98. doi: 10.1118/1.2192581.

Abstract

Positron emission tonography (PET) is useful in diagnosis and radiation treatment planning for a variety of cancers. For patients with cancers in thoracic or upper abdominal region, the respiratory motion produces large distortions in the tumor shape and size, affecting the accuracy in both diagnosis and treatment. Four-dimensional (4D) (gated) PET aims to reduce the motion artifacts and to provide accurate measurement of the tumor volume and the tracer concentration. A major issue in 4D PET is the lack of statistics. Since the collected photons are divided into several frames in the 4D PET scan, the quality of each reconstructed frame degrades as the number of frames increases. The increased noise in each frame heavily degrades the quantitative accuracy of the PET imaging. In this work, we propose a method to enhance the performance of 4D PET by developing a new technique of 4D PET reconstruction with incorporation of an organ motion model derived from 4D-CT images. The method is based on the well-known maximum-likelihood expectation-maximization (ML-EM) algorithm. During the processes of forward- and backward-projection in the ML-EM iterations, all projection data acquired at different phases are combined together to update the emission map with the aid of deformable model, the statistics is therefore greatly improved. The proposed algorithm was first evaluated with computer simulations using a mathematical dynamic phantom. Experiment with a moving physical phantom was then carried out to demonstrate the accuracy of the proposed method and the increase of signal-to-noise ratio over three-dimensional PET. Finally, the 4D PET reconstruction was applied to a patient case.

摘要

正电子发射断层扫描(PET)在多种癌症的诊断和放射治疗计划中很有用。对于胸部或上腹部患有癌症的患者,呼吸运动在肿瘤形状和大小上产生很大的畸变,影响诊断和治疗的准确性。四维(4D)(门控)PET旨在减少运动伪影,并提供肿瘤体积和示踪剂浓度的准确测量。4D PET中的一个主要问题是缺乏统计数据。由于在4D PET扫描中收集的光子被分成几个帧,随着帧数增加,每个重建帧的质量会下降。每个帧中增加的噪声严重降低了PET成像的定量准确性。在这项工作中,我们提出了一种方法,通过开发一种新的4D PET重建技术并结合从4D-CT图像导出的器官运动模型来提高4D PET的性能。该方法基于著名的最大似然期望最大化(ML-EM)算法。在ML-EM迭代的前向和后向投影过程中,在不同相位采集的所有投影数据被组合在一起,并借助可变形模型更新发射图,因此统计数据得到了极大改善。首先使用数学动态体模通过计算机模拟对所提出的算法进行评估。然后进行了移动物理体模的实验,以证明所提出方法的准确性以及与三维PET相比信噪比的提高。最后,将4D PET重建应用于一个患者病例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验