Suppr超能文献

利用 PET 超集数据进行全 4D PET 重建的运动补偿。

Motion compensation for fully 4D PET reconstruction using PET superset data.

机构信息

Montreal Neurological Institute, McGill University, Montreal, Canada.

出版信息

Phys Med Biol. 2010 Jul 21;55(14):4063-82. doi: 10.1088/0031-9155/55/14/008. Epub 2010 Jul 5.

Abstract

Fully 4D PET image reconstruction is receiving increasing research interest due to its ability to significantly reduce spatiotemporal noise in dynamic PET imaging. However, thus far in the literature, the important issue of correcting for subject head motion has not been considered. Specifically, as a direct consequence of using temporally extensive basis functions, a single instance of movement propagates to impair the reconstruction of multiple time frames, even if no further movement occurs in those frames. Existing 3D motion compensation strategies have not yet been adapted to 4D reconstruction, and as such the benefits of 4D algorithms have not yet been reaped in a clinical setting where head movement undoubtedly occurs. This work addresses this need, developing a motion compensation method suitable for fully 4D reconstruction methods which exploits an optical tracking system to measure the head motion along with PET superset data to store the motion compensated data. List-mode events are histogrammed as PET superset data according to the measured motion, and a specially devised normalization scheme for motion compensated reconstruction from the superset data is required. This work proceeds to propose the corresponding time-dependent normalization modifications which are required for a major class of fully 4D image reconstruction algorithms (those which use linear combinations of temporal basis functions). Using realistically simulated as well as real high-resolution PET data from the HRRT, we demonstrate both the detrimental impact of subject head motion in fully 4D PET reconstruction and the efficacy of our proposed modifications to 4D algorithms. Benefits are shown both for the individual PET image frames as well as for parametric images of tracer uptake and volume of distribution for (18)F-FDG obtained from Patlak analysis.

摘要

由于其能够显著降低动态 PET 成像中的时空噪声,完全 4D PET 图像重建正受到越来越多的研究关注。然而,到目前为止,文献中尚未考虑到校正受试者头部运动这一重要问题。具体来说,由于使用了时间上广泛的基函数,单次运动就会传播到多个时间帧的重建中,即使在这些帧中没有发生进一步的运动。现有的 3D 运动补偿策略尚未适应 4D 重建,因此,在头部运动无疑发生的临床环境中,4D 算法的优势尚未得到充分发挥。这项工作解决了这一需求,开发了一种适用于完全 4D 重建方法的运动补偿方法,该方法利用光学跟踪系统测量头部运动,同时使用 PET 超集数据存储运动补偿数据。列表模式事件根据测量的运动按 PET 超集数据进行直方图化,并且需要为从超集数据进行运动补偿重建设计特殊的归一化方案。这项工作接着提出了完全 4D 图像重建算法(那些使用时间基函数的线性组合的算法)所需要的相应时变归一化修改。使用来自 HRRT 的真实模拟和真实高分辨率 PET 数据,我们既证明了在完全 4D PET 重建中受试者头部运动的有害影响,也证明了我们对 4D 算法的修改的有效性。不仅在单个 PET 图像帧中,而且在(18)F-FDG 的示踪剂摄取和分布容积的参数图像中都显示出了受益,这些图像是从 Patlak 分析中获得的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验