Suppr超能文献

利用系统建模和解剖学先验知识改进PET/CT图像重建的定量分析。

Improved quantitation for PET/CT image reconstruction with system modeling and anatomical priors.

作者信息

Alessio Adam M, Kinahan Paul E

机构信息

Department of Radiology, University of Washington Medical Center, 200 Old Fisheries Center Box 357987, Seattle, Washington 98195-7987, USA.

出版信息

Med Phys. 2006 Nov;33(11):4095-103. doi: 10.1118/1.2358198.

Abstract

Accurate quantitation of positron emission tomography (PET) tracer uptake levels in tumors is important for staging and monitoring response to treatment. Quantitative accuracy in PET is particularly poor for small tumors because of system partial volume errors and smoothing operations. This work proposes a reconstruction algorithm to reduce the quantitative errors due to limited system resolution and due to necessary image noise reduction. We propose a method for finding and using the detection system response in the projection matrix of a statistical reconstruction algorithm. In addition, we use aligned anatomical information, available in PET/CT scanners, to govern the penalty term applied during each image update. These improvements are combined with Fourier rebinning in a clinically feasible algorithm for reconstructing fully three-dimensional PET data. Results from simulation and measured studies show improved quantitation of tumor values in terms of bias and variance across multiple tumor sizes and activity levels with the proposed method. At common clinical image noise levels for the detection task, the proposed method reduces the error in maximum tumor values by 11% compared to filtered back-projection and 5% compared to conventional iterative methods.

摘要

准确量化肿瘤中正电子发射断层扫描(PET)示踪剂摄取水平对于肿瘤分期和监测治疗反应至关重要。由于系统部分容积误差和平滑操作,PET对小肿瘤的定量准确性特别差。这项工作提出了一种重建算法,以减少由于系统分辨率有限和必要的图像降噪导致的定量误差。我们提出了一种在统计重建算法的投影矩阵中查找和使用检测系统响应的方法。此外,我们利用PET/CT扫描仪中可用的对齐解剖信息来控制每次图像更新期间应用的惩罚项。这些改进与傅里叶重排相结合,形成了一种临床上可行的算法,用于重建全三维PET数据。模拟和实测研究结果表明,所提出的方法在多个肿瘤大小和活性水平上,在偏差和方差方面提高了肿瘤值的定量。在检测任务的常见临床图像噪声水平下,与滤波反投影相比,所提出的方法将最大肿瘤值的误差降低了11%,与传统迭代方法相比降低了5%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验