Suppr超能文献

一种用于半竞争风险问题的缺失数据方法。

A missing data approach to semi-competing risks problems.

作者信息

Dignam James J, Wieand Kelly, Rathouz Paul J

机构信息

Department of Health Studies, The University of Chicago, Chicago, IL 60637, USA.

出版信息

Stat Med. 2007 Feb 20;26(4):837-56. doi: 10.1002/sim.2582.

Abstract

For event time data involving multiple mutually exclusive competing causes of failure, classic competing risks results show that marginal survival distributions are not identifiable. In a related instance, one or more failure modes may be observed provided that the failure events occur in a specific order. In such situations, sometimes referred to as semi-competing risks problems, the observations may under realistic assumptions lend information about parameters of interest that would be nonidentifiable in the strict competing risks case. Here, we present an approach that makes use of partially observable multiple modes of failures to obtain an estimate of the marginal distribution of one event type that may occur prior to the occurrence of another event type or be precluded by it. We apply the proposed method to the problem of estimating the distribution of time to tumour recurrence at specific sites among breast cancer patients participating in randomized clinical trials.

摘要

对于涉及多个相互排斥的竞争失效原因的事件时间数据,经典的竞争风险结果表明边际生存分布是不可识别的。在一个相关的情形中,只要失效事件按特定顺序发生,就可能观察到一个或多个失效模式。在这种有时被称为半竞争风险问题的情况下,在现实假设下,这些观测值可能会提供有关感兴趣参数的信息,而这些参数在严格的竞争风险情形中是不可识别的。在此,我们提出一种方法,该方法利用部分可观测的多种失效模式来估计一种事件类型的边际分布,这种事件类型可能在另一种事件类型发生之前出现,或者被其排除。我们将所提出的方法应用于估计参与随机临床试验的乳腺癌患者特定部位肿瘤复发时间分布的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验