Suppr超能文献

骨肉瘤患者的竞争风险分析:四种不同方法的比较。

Competing risks analysis of patients with osteosarcoma: a comparison of four different approaches.

作者信息

Tai B C, Machin D, White I, Gebski V

机构信息

National Medical Research Council, Clinical Trials & Epidemiology Research Unit, 10 College Road, Singapore 169851.

出版信息

Stat Med. 2001 Mar 15;20(5):661-84. doi: 10.1002/sim.711.

Abstract

In failure time studies involving a chronic disease such as cancer, several competing causes of mortality may be operating. Commonly, the conventional statistical technique of Kaplan-Meier, which is only meaningfully interpreted by assuming independence of failure types and the censoring mechanism, is employed in clinical research involving competing risks data. Some authors have advocated the use of a cause-specific cumulative incidence function which takes into account the existence of other events within a competing risks framework, without making any assumption about independence. Lunn and McNeil have proposed an approach based on an extension of the Cox proportional hazards regression, which enables direct comparisons between failure types. We have extended this approach to estimate cause-specific cumulative incidence. As it is often not easy to follow competing risks methodology in the literature, this paper sets out systematically the assumptions made and the steps taken to implement four different methods of analysing competing risks data using cumulative incidence rates or the Kaplan-Meier estimates of cause-specific failure probabilities. The data obtained from a randomized trial of patients with osteosarcoma were used to compare these four approaches. As illustrated using the osteosarcoma data, the estimates of the classical Kaplan-Meier methods have larger numerical values than the cause-specific cumulative incidence. On the other hand, estimates of the cause-specific cumulative incidence rates from the conventional method and the modified Cox method are highly comparable.

摘要

在涉及癌症等慢性病的生存时间研究中,可能存在多种相互竞争的死亡原因。通常,在涉及竞争风险数据的临床研究中,会采用传统的Kaplan-Meier统计技术,该技术只有在假设失败类型和删失机制相互独立的情况下才有意义。一些作者主张使用特定原因累积发病率函数,该函数在竞争风险框架内考虑了其他事件的存在,而无需对独立性做任何假设。Lunn和McNeil提出了一种基于Cox比例风险回归扩展的方法,该方法能够直接比较不同的失败类型。我们扩展了这种方法来估计特定原因累积发病率。由于在文献中遵循竞争风险方法往往并不容易,本文系统地阐述了使用累积发病率或特定原因失败概率的Kaplan-Meier估计值来分析竞争风险数据的四种不同方法所做的假设和采取的步骤。从骨肉瘤患者的随机试验中获得的数据用于比较这四种方法。如使用骨肉瘤数据所示,经典Kaplan-Meier方法的估计值在数值上大于特定原因累积发病率。另一方面,传统方法和改良Cox方法的特定原因累积发病率估计值具有高度可比性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验