Suppr超能文献

一种用于稠密颗粒流的本构定律。

A constitutive law for dense granular flows.

作者信息

Jop Pierre, Forterre Yoël, Pouliquen Olivier

机构信息

IUSTI, CNRS UMR 6595, Université de Provence, 5 rue Enrico Fermi, 13453 Marseille cedex 13, France.

出版信息

Nature. 2006 Jun 8;441(7094):727-30. doi: 10.1038/nature04801.

Abstract

A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

摘要

对颗粒流进行连续介质描述,对于预测自然地球物理灾害或设计工业流程将有很大帮助。然而,干颗粒流的本构方程,即控制材料在剪切作用下如何运动的方程,仍然存在争议。一个困难在于,颗粒可以表现得像固体(如在沙堆中)、液体(从筒仓中倒出时)或气体(强烈搅拌时)。对于这两种极端状态,已经基于碰撞快速流的动力学理论和慢速塑性流的土力学提出了本构方程。然而,颗粒材料像液体一样流动的中间密集状态,仍然缺乏统一的观点,并且在过去十年中引发了许多研究。颗粒液体的主要特征是:屈服准则(低于该临界剪应力时流动不可能发生)以及流动时对剪切速率的复杂依赖性。从这个意义上说,颗粒物质与宾汉流体等经典粘塑性流体有相似之处。在此,受这种类比以及最近的数值和实验工作启发,我们提出了一种新的密集颗粒流本构关系。然后,我们通过在粗糙侧壁之间的堆积体上进行颗粒流实验来测试我们的三维(3D)模型,在该实验中会形成复杂的3D流动模式。我们表明,无需任何拟合参数,该模型就能对流动形状和速度剖面给出定量预测。我们的结果支持这样一种观点,即简单的粘塑性方法可以定量地捕捉颗粒流特性,并且可以作为在地球物理或工业应用中对更复杂流动进行建模的基本工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验