Haver Daan, Acuña Daniel, Janbaz Shahram, Lerner Edan, Düring Gustavo, Coulais Corentin
Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Institute of Physics, Universiteit van Amsterdam, Amsterdam 1098 XH, The Netherlands.
Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8370458, Chile.
Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2317915121. doi: 10.1073/pnas.2317915121. Epub 2024 Mar 27.
The flowing, jamming, and avalanche behavior of granular materials is satisfyingly universal and vexingly hard to tune: A granular flow is typically intermittent and will irremediably jam if too confined. Here, we show that granular metamaterials made from particles with a negative Poisson's ratio yield more easily and flow more smoothly than ordinary granular materials. We first create a collection of auxetic grains based on a re-entrant mechanism and show that each grain exhibits a negative Poisson's ratio regardless of the direction of compression. Interestingly, we find that the elastic and yielding properties are governed by the high compressibility of granular metamaterials: At a given confinement, they exhibit lower shear modulus, lower yield stress, and more frequent, smaller avalanches than materials made from ordinary grains. We further demonstrate that granular metamaterials promote flow in more complex confined geometries, such as intruder and hopper geometries, even when the packing contains only a fraction of auxetic grains. Moreover, auxetic granular metamaterials exhibit enhanced impact absorption. Our findings blur the boundary between complex fluids and metamaterials and could help in scenarios that involve process, transport, and reconfiguration of granular materials.
颗粒材料的流动、堵塞和崩塌行为具有令人满意的普遍性,但却极难调节:颗粒流通常是间歇性的,如果限制过多就会不可避免地堵塞。在此,我们表明,由具有负泊松比的颗粒制成的颗粒超材料比普通颗粒材料更容易屈服且流动更顺畅。我们首先基于一种凹角机制创建了一组拉胀颗粒,并表明每个颗粒无论压缩方向如何都呈现负泊松比。有趣的是,我们发现弹性和屈服特性受颗粒超材料的高压缩性支配:在给定的约束条件下,与由普通颗粒制成的材料相比,它们表现出更低的剪切模量、更低的屈服应力以及更频繁、更小的崩塌。我们进一步证明,颗粒超材料能促进在更复杂的受限几何形状(如侵入体和漏斗几何形状)中的流动,即使填充物中仅含有一小部分拉胀颗粒。此外,拉胀颗粒超材料表现出增强的冲击吸收能力。我们的发现模糊了复杂流体和超材料之间的界限,并可能有助于涉及颗粒材料的加工、运输和重新配置的场景。