Suppr超能文献

灵长类动物前肢的习惯性使用反映在桡骨远端软骨下骨的材料特性上。

Habitual use of the primate forelimb is reflected in the material properties of subchondral bone in the distal radius.

作者信息

Carlson Kristian J, Patel Biren A

机构信息

Department of Anatomical Sciences, School of Medicine, Stony Brook University, USA.

出版信息

J Anat. 2006 Jun;208(6):659-70. doi: 10.1111/j.1469-7580.2006.00555.x.

Abstract

Bone mineral density is directly proportional to compressive strength, which affords an opportunity to estimate in vivo joint load history from the subchondral cortical plate of articular surfaces in isolated skeletal elements. Subchondral bone experiencing greater compressive loads should be of relatively greater density than subchondral bone experiencing less compressive loading. Distribution of the densest areas, either concentrated or diffuse, also may be influenced by the extent of habitual compressive loading. We evaluated subchondral bone in the distal radius of several primates whose locomotion could be characterized in one of three general ways (quadrupedal, suspensory or bipedal), each exemplifying a different manner of habitual forelimb loading (i.e. compression, tension or non-weight-bearing, respectively). We employed computed tomography osteoabsorptiometry (CT-OAM) to acquire optical densities from which false-colour maps were constructed. The false-colour maps were used to evaluate patterns in subchondral density (i.e. apparent density). Suspensory apes and bipedal humans had both smaller percentage areas and less well-defined concentrations of regions of high apparent density relative to quadrupedal primates. Quadrupedal primates exhibited a positive allometric effect of articular surface size on high-density area, whereas suspensory primates exhibited an isometric effect and bipedal humans exhibited no significant relationship between the two. A significant difference between groups characterized by predominantly compressive forelimb loading regimes vs. tensile or non-weight-bearing regimes indicates that subchondral apparent density in the distal radial articular surface distinguishes modes of habitually supporting of body mass.

摘要

骨矿物质密度与抗压强度成正比,这为从孤立骨骼元素关节表面的软骨下皮质板估计体内关节负荷历史提供了机会。承受较大压缩负荷的软骨下骨的密度应相对高于承受较小压缩负荷的软骨下骨。最密集区域的分布,无论是集中的还是分散的,也可能受习惯性压缩负荷程度的影响。我们评估了几种灵长类动物桡骨远端的软骨下骨,这些灵长类动物的运动方式可分为三种一般类型(四足、悬吊或两足),每种类型代表一种不同的习惯性前肢负荷方式(即分别为压缩、拉伸或非负重)。我们采用计算机断层扫描骨吸收测量法(CT-OAM)获取光学密度,据此构建伪彩色图。伪彩色图用于评估软骨下密度模式(即表观密度)。相对于四足灵长类动物,悬吊类猿和两足人类的高表观密度区域的面积百分比更小,且浓度界定更不清晰。四足灵长类动物关节表面大小对高密度区域呈现正异速生长效应,而悬吊类灵长类动物呈现等速生长效应,两足人类则在两者之间未表现出显著关系。以主要为压缩性前肢负荷方式与拉伸或非负重方式为特征的组之间存在显著差异,这表明桡骨远端关节表面的软骨下表观密度可区分习惯性支撑体重的模式。

相似文献

2
Bone density spatial patterns in the distal radius reflect habitual hand postures adopted by quadrupedal primates.
J Hum Evol. 2007 Feb;52(2):130-41. doi: 10.1016/j.jhevol.2006.08.007. Epub 2006 Sep 5.
3
Apparent density patterns in subchondral bone of the sloth and anteater forelimb.
Biol Lett. 2008 Oct 23;4(5):486-9. doi: 10.1098/rsbl.2008.0297.
5
A correlation exists between subchondral bone mineral density of the distal radius and systemic bone mineral density.
Clin Orthop Relat Res. 2012 Jun;470(6):1682-9. doi: 10.1007/s11999-011-2168-4. Epub 2011 Dec 3.
7
Joint loads in marsupial ankles reflect habitual bipedalism versus quadrupedalism.
PLoS One. 2013;8(3):e58811. doi: 10.1371/journal.pone.0058811. Epub 2013 Mar 12.
8
Patterns of subchondral bone mineralization in the distal radioulnar joint.
J Hand Surg Am. 2005 Mar;30(2):343-50. doi: 10.1016/j.jhsa.2004.09.013.
9
Correlation between mineralization and mechanical strength of the subchondral bone plate of the humeral head.
J Shoulder Elbow Surg. 2012 Jul;21(7):887-93. doi: 10.1016/j.jse.2011.05.018. Epub 2011 Aug 26.

引用本文的文献

1
Elliptical Fourier analysis of hominoid radius shape: implications for Ardipithecus ramidus.
Biol Open. 2025 May 15;14(5). doi: 10.1242/bio.061938. Epub 2025 Jun 3.
2
Subchondral bone density changes of the talus in dogs with tarsocrural osteochondrosis.
BMC Vet Res. 2025 Apr 7;21(1):252. doi: 10.1186/s12917-025-04683-2.
4
Ontogenetic Patterning of Human Subchondral Bone Microarchitecture in the Proximal Tibia.
Biology (Basel). 2022 Jul 1;11(7):1002. doi: 10.3390/biology11071002.
5
Cortical and trabecular bone structure of the hominoid capitate.
J Anat. 2021 Aug;239(2):351-373. doi: 10.1111/joa.13437. Epub 2021 May 4.
6
The position of Australopithecus sediba within fossil hominin hand use diversity.
Nat Ecol Evol. 2020 Jul;4(7):911-918. doi: 10.1038/s41559-020-1207-5. Epub 2020 May 18.
7
Lumbar facet joint subchondral bone density in low back pain and asymptomatic subjects.
Skeletal Radiol. 2020 Apr;49(4):571-576. doi: 10.1007/s00256-019-03314-w. Epub 2019 Oct 30.
10
Subchondral bone density distribution of the talus in clinically normal Labrador Retrievers.
BMC Vet Res. 2016 Mar 15;12:56. doi: 10.1186/s12917-016-0678-8.

本文引用的文献

2
The relationship between the stiffness and the mineral content of bone.
J Biomech. 1969 Oct;2(4):477-80. doi: 10.1016/0021-9290(69)90023-2.
3
The mechanical consequences of variation in the mineral content of bone.
J Biomech. 1969 Mar;2(1):1-11. doi: 10.1016/0021-9290(69)90036-0.
4
The determinants of change in tibial plateau bone area in osteoarthritic knees: a cohort study.
Arthritis Res Ther. 2005;7(3):R687-93. doi: 10.1186/ar1726. Epub 2005 Mar 31.
5
The aging of Wolff's "law": ontogeny and responses to mechanical loading in cortical bone.
Am J Phys Anthropol. 2004;Suppl 39:63-99. doi: 10.1002/ajpa.20155.
7
Ulnar variance and subchondral bone mineralization patterns in the distal articular surface of the radius.
J Hand Surg Am. 2004 Sep;29(5):835-40. doi: 10.1016/j.jhsa.2004.05.015.
9
Adaptation of subchondral bone in osteoarthritis.
Biorheology. 2004;41(3-4):359-68.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验