Pál Gábor, Kouadio Jean-Louis K, Artis Dean R, Kossiakoff Anthony A, Sidhu Sachdev S
Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, Cummings Life Sciences Center, University of Chicago, Chicago, Illinois 60637.
Department of Protein Engineering, Genentech Inc., South San Francisco, California 94080.
J Biol Chem. 2006 Aug 4;281(31):22378-22385. doi: 10.1074/jbc.M603826200. Epub 2006 Jun 8.
A novel, quantitative saturation (QS) scanning strategy was developed to obtain a comprehensive data base of the structural and functional effects of all possible mutations across a large protein-protein interface. The QS scan approach was applied to the high affinity site of human growth hormone (hGH) for binding to its receptor (hGHR). Although the published structure-function data base describing this system is probably the most extensive for any large protein-protein interface, it is nonetheless too sparse to accurately describe the nature of the energetics governing the interaction. Our comprehensive data base affords a complete view of the binding site and provides important new insights into the general principles underlying protein-protein interactions. The hGH binding interface is highly adaptable to mutations, but the nature of the tolerated mutations challenges generally accepted views about the evolutionary and biophysical pressures governing protein-protein interactions. Many substitutions that would be considered chemically conservative are not tolerated, while conversely, many non-conservative substitutions can be accommodated. Furthermore, conservation across species is a poor predictor of the chemical character of tolerated substitutions across the interface. Numerous deviations from generally accepted expectations indicate that mutational tolerance is highly context dependent and, furthermore, cannot be predicted by our current knowledge base. The type of data produced by the comprehensive QS scan can fill the gaps in the structure-function matrix. The compilation of analogous data bases from studies of other protein-protein interactions should greatly aid the development of computational methods for explaining and designing molecular recognition.
我们开发了一种全新的定量饱和度(QS)扫描策略,以获取关于大型蛋白质 - 蛋白质界面上所有可能突变的结构和功能影响的全面数据库。QS扫描方法应用于人生长激素(hGH)与其受体(hGHR)结合的高亲和力位点。尽管已发表的描述该系统的结构 - 功能数据库可能是所有大型蛋白质 - 蛋白质界面中最广泛的,但它仍然过于稀疏,无法准确描述控制相互作用的能量学性质。我们的综合数据库提供了结合位点的完整视图,并为蛋白质 - 蛋白质相互作用的一般原则提供了重要的新见解。hGH结合界面高度适应突变,但耐受突变的性质挑战了关于控制蛋白质 - 蛋白质相互作用的进化和生物物理压力的普遍接受的观点。许多在化学上被认为是保守的取代是不被耐受的,而相反,许多非保守取代却可以被容纳。此外,跨物种的保守性并不能很好地预测界面上耐受取代的化学特征。许多与普遍接受的预期的偏差表明,突变耐受性高度依赖于上下文,而且,不能由我们目前的知识库预测。全面QS扫描产生的数据类型可以填补结构 - 功能矩阵中的空白。通过对其他蛋白质 - 蛋白质相互作用的研究汇编类似的数据库,应该会极大地有助于开发用于解释和设计分子识别的计算方法。