Fenton Aron W, Page Braelyn M, Spellman-Kruse Arianna, Hagenbuch Bruno, Swint-Kruse Liskin
Depart ment of Biochemistry and Molecuar Biology, The University of Kansas Medical Center, Kansas City, KS 66160.
Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, NE 68588.
Med Chem Res. 2020 Jul;29(7):1133-1146. doi: 10.1007/s00044-020-02582-9. Epub 2020 Jun 7.
To achieve the full potential of pharmacogenomics, one must accurately predict the functional out comes that arise from amino acid substitutions in proteins. Classically, researchers have focused on understanding the consequences of individual substitutions. However, literature surveys have shown that most substitutions were created at evolutionarily conserved positions. Awareness of this bias leads to a shift in perspective, from considering the outcomes of individual substitutions to understanding the roles of individual protein positions. Conserved positions tend to act as "toggle" switches, with most substitutions abolishing function. However, nonconserved positions have been found equally capable of affecting protein function. Indeed, many nonconserved positions act like functional dimmer switches ("rheostat" positions): This is revealed when multiple substitutions are made at a single position. Each substitution has a different functional outcome; the set of substitutions spans arange of outcomes. Finally, some nonconserved positions appear neutral, capable of accommodating all amino acid types without modifying function. This manuscript reviews the currently-known properties of rheost at positions, with examples shown for pyruvate kinase, organic anion transporting polypeptide 1B1, the beta-lactamase inhibitory protein, and angiotensin-converting enzyme 2. Outcomes observed for rheostat positions have implications for the rational design of drug analogs and allosteric drugs. Furthermore, this new framework - comprising three types of protein positions - provides a new approach to interpreting disease and population-based databases of amino acid changes. In conclusion, although a full understanding of substitution out comes at rheostat positions poses a challenge, utilization of this new frame of reference will further advance the application of pharmacogenomics.
为了充分发挥药物基因组学的潜力,必须准确预测蛋白质中氨基酸替换所产生的功能结果。传统上,研究人员专注于理解单个替换的后果。然而,文献调查表明,大多数替换发生在进化保守的位置。意识到这种偏差会导致视角的转变,从考虑单个替换的结果转向理解单个蛋白质位置的作用。保守位置往往充当“切换”开关,大多数替换会消除功能。然而,已发现非保守位置同样能够影响蛋白质功能。事实上,许多非保守位置的作用就像功能调光开关(“变阻器”位置):当在单个位置进行多个替换时就会揭示这一点。每个替换都有不同的功能结果;这组替换涵盖了一系列结果。最后,一些非保守位置似乎是中性的,能够容纳所有氨基酸类型而不改变功能。本手稿回顾了目前已知的变阻器位置的特性,并以丙酮酸激酶、有机阴离子转运多肽1B1、β-内酰胺酶抑制蛋白和血管紧张素转换酶2为例进行说明。变阻器位置观察到的结果对药物类似物和变构药物的合理设计具有启示意义。此外,这个由三种类型的蛋白质位置组成的新框架为解释基于疾病和人群的氨基酸变化数据库提供了一种新方法。总之,尽管全面理解变阻器位置的替换结果具有挑战性,但利用这个新的参考框架将进一步推动药物基因组学的应用。