通过对三个同源蛋白-蛋白复合物进行深度突变扫描来攀爬结合景观。
Climbing Up and Down Binding Landscapes through Deep Mutational Scanning of Three Homologous Protein-Protein Complexes.
机构信息
Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
出版信息
J Am Chem Soc. 2021 Oct 20;143(41):17261-17275. doi: 10.1021/jacs.1c08707. Epub 2021 Oct 5.
Protein-protein interactions (PPIs) have evolved to display binding affinities that can support their function. As such, cognate and noncognate PPIs could be highly similar structurally but exhibit huge differences in binding affinities. To understand this phenomenon, we study three homologous protease-inhibitor PPIs that span 9 orders of magnitude in binding affinity. Using state-of-the-art methodology that combines protein randomization, affinity sorting, deep sequencing, and data normalization, we report quantitative binding landscapes consisting of ΔΔ values for the three PPIs, gleaned from tens of thousands of single and double mutations. We show that binding landscapes of the three complexes are strikingly different and depend on the PPI evolutionary optimality. We observe different patterns of couplings between mutations for the three PPIs with negative and positive epistasis appearing most frequently at hot-spot and cold-spot positions, respectively. The evolutionary trends observed here are likely to be universal to other biological complexes in the cell.
蛋白质-蛋白质相互作用 (PPIs) 的进化显示出结合亲和力,以支持其功能。因此,同源和非同源的 PPI 在结构上可能非常相似,但在结合亲和力上却存在巨大差异。为了理解这一现象,我们研究了跨越 9 个结合亲和力数量级的三个同源蛋白酶抑制剂 PPI。我们使用结合亲和力排序、深度测序和数据归一化等最先进的方法,从数万种单突变和双突变中报告了由 ΔΔ 值组成的三个 PPI 的定量结合图谱。我们表明,三个复合物的结合图谱差异显著,取决于 PPI 的进化最优性。我们观察到三种 PPI 之间突变的不同耦合模式,负遗传和正遗传分别最常出现在热点和冷点位置。这里观察到的进化趋势可能对细胞中其他生物复合物具有普遍性。