Suppr超能文献

儿童类固醇敏感性和类固醇抵抗性特发性肾病综合征的尿液蛋白质组

Urinary proteome of steroid-sensitive and steroid-resistant idiopathic nephrotic syndrome of childhood.

作者信息

Woroniecki Robert P, Orlova Tatyana N, Mendelev Natasha, Shatat Ibrahim F, Hailpern Susan M, Kaskel Frederick J, Goligorsky Michael S, O'Riordan Edmond

机构信息

Section of Pediatric Nephrology, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10467, USA.

出版信息

Am J Nephrol. 2006;26(3):258-67. doi: 10.1159/000093814. Epub 2006 Jun 7.

Abstract

The response to steroid therapy is used to characterize the idiopathic nephrotic syndrome (INS) of childhood as either steroid-sensitive (SSNS) or steroid-resistant (SRNS), a classification with a better prognostic capability than renal biopsy. The majority (approximately 80%) of INS is due to minimal change disease but the percentage of focal and segmental glomerulosclerosis is increasing. We applied a new technological platform to examine the urine proteome to determine if different urinary protein excretion profiles could differentiate patients with SSNS from those with SRNS. Twenty-five patients with INS and 17 control patients were studied. Mid-stream urines were analyzed using surface enhanced laser desorption and ionization mass spectrometry(SELDI-MS). Data were analyzed using multiple bioinformatic techniques. Patient classification was performed using Biomarker Pattern Software and a generalized form of Adaboost and predictive models were generated using a supervised algorithm with cross-validation. Urinary proteomic data distinguished INS patients from control patients, irrespective of steroid response, with a sensitivity of 92.3%, specificity of 93.7%, positive predictive value of 96% and a negative predictive value of 88.2%. Classification of patients as SSNS or SRNS was 100%. A protein of mass 4,144 daltons was identified as the single most important classifier in distinguishing SSNS from SRNS. SELDI-MS combined with bioinformatics can identify different proteomic patterns in INS. Characterization of the proteins of interest identified by this proteomic approach with prospective clinical validation may yield a valuable clinical tool for the non-invasive prediction of treatment response and prognosis.

摘要

类固醇疗法的反应被用于将儿童特发性肾病综合征(INS)分为类固醇敏感型(SSNS)或类固醇抵抗型(SRNS),这种分类方法在预后判断能力上优于肾活检。大多数(约80%)的INS是由微小病变病引起的,但局灶节段性肾小球硬化的比例正在增加。我们应用了一个新的技术平台来检测尿液蛋白质组,以确定不同的尿蛋白排泄谱是否能区分SSNS患者和SRNS患者。研究了25例INS患者和17例对照患者。使用表面增强激光解吸电离质谱(SELDI-MS)分析中段尿。使用多种生物信息学技术分析数据。使用生物标志物模式软件进行患者分类,并采用Adaboost的广义形式,使用具有交叉验证的监督算法生成预测模型。无论类固醇反应如何,尿蛋白质组数据都能将INS患者与对照患者区分开来,灵敏度为92.3%,特异性为93.7%,阳性预测值为96%,阴性预测值为88.2%。将患者分类为SSNS或SRNS的准确率为百分之百。一种质量为4144道尔顿的蛋白质被确定为区分SSNS和SRNS的最重要单一分类器。SELDI-MS与生物信息学相结合可以识别INS中的不同蛋白质组模式。通过这种蛋白质组学方法鉴定出的感兴趣蛋白质,并进行前瞻性临床验证,可能会产生一种有价值的临床工具,用于无创预测治疗反应和预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验